CHEMISTRY (LOOSELEAF) >CUSTOM<
13th Edition
ISBN: 9781264348992
Author: Chang
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14.4, Problem 10PE
At 1280°C the equilibrium constant (Kc) for the reaction
is 1.1 × 10−3. If the initial concentrations are [Br2] = 6.3 × 10−2 M and [Br] = 1.2 × 10−2 M, calculate the concentrations of these species at equilibrium.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain why in the representation of a one-dimensional velocity distribution function for a particular gas, the maximum occurs for vi = 0 m/s.
Explain why the representation of a one-dimensional velocity distribution function for a particular gas becomes flatter as the temperature increases.
Draw a Lewis structure for each of the following molecules and assign
charges where appropriate. The order in which the atoms are connected
is given in parentheses.
a. CIFCIF
b. BrCNBrCN
0
c. SOCI2 × (CISCIO) SOC₁₂ (CISCI)
You can draw both an octet and a valence
shell expanded structure. Considering the following structural information, which
is the better one: The measured S-OS-O bond length in SOC12SOCl2 is 1.43 Å.
For comparison, that in SO2SO2 is 1.43 Å [Exercise 1-9, part (b)], that in
CHзSOHCH3 SOH
d. CH3NH2CH3NH2
(methanesulfenic acid) is 1.66 A.
e. CH3OCH3 CH3 OCH3
NH2
f. N2H2× (HNNH) N2 H2 (HNNH)
g. CH2COCH₂ CO
h. HN3× (HNNN) HN3 (HNNN)
i. N20 × (NNO) N2O (NNO)
Chapter 14 Solutions
CHEMISTRY (LOOSELEAF) >CUSTOM<
Ch. 14.1 - Consider the equilibrium XY, where the forward...Ch. 14.1 - The equilibrium constant Kc for a particular...Ch. 14.2 - Write Kc and Kp for the decomposition of...Ch. 14.2 - Carbonyl chloride (COCl2), also called phosgene,...Ch. 14.2 - Prob. 4PECh. 14.2 - Write equilibrium constant expressions for Kc and...Ch. 14.2 - Consider the following equilibrium at 395 K:...Ch. 14.2 - Prob. 7PECh. 14.2 - For which of the following reactions is Kc equal...Ch. 14.2 - You are given the equilibrium constant for the...
Ch. 14.2 - From the following equilibrium constant...Ch. 14.2 - Write the equilibrium constant expression for the...Ch. 14.3 - The equilibrium constant (Kc) for reaction AB+C is...Ch. 14.4 - The equilibrium constant (Kc) for the formation of...Ch. 14.4 - Consider the reaction in Example 14.9. Starting...Ch. 14.4 - At 1280C the equilibrium constant (Kc) for the...Ch. 14.4 - Use the following information to answer questions...Ch. 14.4 - Use the following information to answer questions...Ch. 14.4 - The equilibrium constant (Kc) for the A2+B22AB...Ch. 14.5 - At 430C, the equilibrium constant (KP) for the...Ch. 14.5 - Consider the equilibrium reaction involving...Ch. 14.5 - Consider the equilibrium between molecular oxygen...Ch. 14.5 - Prob. 1RCFCh. 14.5 - The diagram here shows the gaseous reaction 2AA2...Ch. 14.5 - The diagrams shown here represent the reaction...Ch. 14 - Define equilibrium. Give two examples of a dynamic...Ch. 14 - Explain the difference between physical...Ch. 14 - What is the law of mass action?Ch. 14 - Briefly describe the importance of equilibrium in...Ch. 14 - Define homogeneous equilibrium and heterogeneous...Ch. 14 - Prob. 14.6QPCh. 14 - Write the expressions for the equilibrium...Ch. 14 - Write equilibrium constant expressions for Kc, and...Ch. 14 - Write the equilibrium constant expressions for Kc...Ch. 14 - Write the equation relating Kc to KP, and define...Ch. 14 - What is the rule for writing the equilibrium...Ch. 14 - Give an example of a multiple equilibria reaction.Ch. 14 - Problems 14.13The equilibrium constant for the...Ch. 14 - The following diagrams represent the equilibrium...Ch. 14 - The equilibrium constant (Kc) for the reaction...Ch. 14 - Consider the following equilibrium process at...Ch. 14 - What is KP at 1273C for the reaction...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Consider the following reaction: N2(g)+O2(g)2NO(g)...Ch. 14 - A reaction vessel contains NH3, N2, and H2 at...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - At equilibrium, the pressure of the reacting...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Ammonium carbamate, NH4CO2NH2, decomposes as...Ch. 14 - Consider the following reaction at 1600C....Ch. 14 - Pure phosgene gas (COCl2), 3.00 102 mol, was...Ch. 14 - Consider the equilibrium 2NOBr(g)2NO(g)+Br2(g) If...Ch. 14 - A 2.50-mole quantity of NOCl was initially in a...Ch. 14 - The following equilibrium constants have been...Ch. 14 - The following equilibrium constants have been...Ch. 14 - The following equilibrium constants were...Ch. 14 - At a certain temperature the following reactions...Ch. 14 - Based on rate constant considerations, explain why...Ch. 14 - Explain why reactions with large equilibrium...Ch. 14 - Water is a very weak electrolyte that undergoes...Ch. 14 - Consider the following reaction, which takes place...Ch. 14 - Define reaction quotient. How does it differ from...Ch. 14 - Prob. 14.38QPCh. 14 - The equilibrium constant KP for the reaction...Ch. 14 - For the synthesis of ammonia N2(g)+2H2(g)2NH3(g)...Ch. 14 - For the reaction H2(g)+CO2(g)H2O(g)+CO(g) at 700C,...Ch. 14 - At 1000 K, a sample of pure NO2 gas decomposes:...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - The dissociation of molecular iodine into iodine...Ch. 14 - The equilibrium constant Kc for the decomposition...Ch. 14 - Consider the following equilibrium process at...Ch. 14 - Consider the heterogeneous equilibrium process:...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - Explain Le Chteliers principle. How can this...Ch. 14 - Use Le Chteliers principle to explain why the...Ch. 14 - List four factors that can shift the position of...Ch. 14 - Does the addition of a catalyst have any effects...Ch. 14 - Consider the following equilibrium system...Ch. 14 - Heating solid sodium bicarbonate in a closed...Ch. 14 - Consider the following equilibrium systems: (a)...Ch. 14 - Consider the equilibrium 2I(g)2I2(g) What would be...Ch. 14 - Consider the following equilibrium process:...Ch. 14 - Consider the reaction...Ch. 14 - In the uncatalyzed reaction N2O4(g)2NO2(g) the...Ch. 14 - Consider the gas-phase reaction...Ch. 14 - Consider the statement: The equilibrium constant...Ch. 14 - Pure nitrosyl chloride (NOCl) gas was heated to...Ch. 14 - Determine the initial and equilibrium...Ch. 14 - Diagram (a) shows the reaction A2(g)+B2(g)2AB(g)...Ch. 14 - The equilibrium constant (KP) for the formation of...Ch. 14 - Baking soda (sodium bicarbonate) undergoes thermal...Ch. 14 - Consider the following reaction at equilibrium:...Ch. 14 - The equilibrium constant KP for the reaction...Ch. 14 - Consider the following reacting system:...Ch. 14 - At a certain temperature and a total pressure of...Ch. 14 - Consider the reaction 2NO(g)+O2(g)2NO2(g) At 430C,...Ch. 14 - When heated, ammonium carbamate decomposes as...Ch. 14 - A mixture of 0.47 mole of H2 and 3.59 moles of HCl...Ch. 14 - When heated at high temperatures, iodine vapor...Ch. 14 - One mole of N2 and three moles of H2 are placed in...Ch. 14 - Prob. 14.79QPCh. 14 - A quantity of 6.75 g of SO2Cl2 was placed in a...Ch. 14 - Prob. 14.81QPCh. 14 - Prob. 14.82QPCh. 14 - Eggshells are composed mostly of calcium carbonate...Ch. 14 - The equilibrium constant KP for the following...Ch. 14 - When dissolved in water, glucose (corn sugar) and...Ch. 14 - At room temperature, solid iodine is in...Ch. 14 - Prob. 14.89QPCh. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - When heated, a gaseous compound A dissociates as...Ch. 14 - When a gas was heated under atmospheric...Ch. 14 - Prob. 14.93QPCh. 14 - At 20C, the vapor pressure of water is 0.0231 atm....Ch. 14 - Industrially, sodium metal is obtained by...Ch. 14 - In the gas phase, nitrogen dioxide is actually a...Ch. 14 - Prob. 14.99QPCh. 14 - The equilibrium constant for the reaction 4X+Y3Z...Ch. 14 - About 75 percent of hydrogen for industrial use is...Ch. 14 - Prob. 14.102QPCh. 14 - Consider the decomposition of ammonium chloride at...Ch. 14 - At 25C, the equilibrium partial pressures of NO2...Ch. 14 - Prob. 14.105QPCh. 14 - Prob. 14.107QPCh. 14 - Prob. 14.108QPCh. 14 - At 25C, a mixture of NO2 and N2O4 gases are in...Ch. 14 - A student placed a few ice cubes in a drinking...Ch. 14 - Consider the potential energy diagrams for two...Ch. 14 - The equilibrium constant Kc for the reaction...Ch. 14 - Prob. 14.113QPCh. 14 - The equilibrium constant (KP) for the reaction...Ch. 14 - The forward and reverse rate constants for the...Ch. 14 - Consider the reaction between NO2 and N2O4 in a...Ch. 14 - Prob. 14.118QPCh. 14 - (a) Use the vant Hoff equation in Problem 14.118...Ch. 14 - The KP for the reaction SO2Cl2(g)SO2(g)+Cl2(g) is...Ch. 14 - Prob. 14.121QPCh. 14 - Consider the following equilibrium system:...Ch. 14 - Prob. 14.125QPCh. 14 - Estimate the vapor pressure of water at 60C (see...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- bre The reaction sequence shown in Scheme 5 demonstrates the synthesis of a substituted benzene derivative Q. wolsd works 2 NH2 NaNO2, HCI (apexe) 13× (1 HNO3, H2SO4 C6H5CIN2 0°C HOTE CHINO₂ N O *O₂H ( PO Q Я Scheme 5 2 bag abouoqmics to sounde odi WEIC (i) Draw the structure of intermediate O. [2 marks] to noitsmot od: tot meinedogm, noit so oft listsb ni zaupaib bas wa (ii) Draw the mechanism for the transformation of aniline N to intermediate O. Spoilage (b) [6 marks] (iii) Identify the reagent X used to convert compound O to the iodinated compound [tom E P. vueimado oilovonsa ni moitos nolisbnolov ayd toes ai tedw nisiqx (iv) Identify the possible structures of compound Q. [2 marks] [2 marks] [shom 2] (v) bus noires goiribbeolovo xnivollot adj to subora sidab Draw the mechanism for the transformation of intermediate P to compound Q. [5 marks] vi (vi) Account for the regiochemical outcome observed in the reaction forming compound Q. [3 marks]arrow_forwardPROBLEM 4 Solved Show how 1-butanol can be converted into the following compounds: a. PROBLEM 5+ b. d. -C= Narrow_forwardWhich alkene is the major product of this dehydration? OH H2SO4 heatarrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe vibrational contribution isa) temperature independent for internal energy and heat capacityb) temperature dependent for internal energy and heat capacityc) temperature independent for heat capacityd) temperature independent for internal energyarrow_forward
- Quantum mechanics. Explain the basis of approximating the summation to an integral in translational motion.arrow_forwardQuantum mechanics. In translational motion, the summation is replaced by an integral when evaluating the partition function. This is correct becausea) the spacing of the translational energy levels is very small compared to the product kTb) the spacing of the translational energy levels is comparable to the product kTc) the spacing of the translational energy levels is very large compared to the product kTarrow_forwardDon't used Ai solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY