Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9781259639272
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14.3, Problem 14.87P
Solve Prob. 14.86, assuming that the chain is being lowered to the floor at a constant speed v.
14.86 A chain of length l and mass m lies in a pile on the floor. If its end A is raised vertically at a constant speed v, express in terms of the length y of chain that is off the floor at any given instant (a) the magnitude of the force P applied to A, (b) the reaction of the floor.
Fig. P14.86
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
12.92 Two 2.6-lb collars A and B can slide without friction on a frame, con-
sisting of the horizontal rod OE and the vertical rod CD, which is free
to rotate about CD. The two collars are connected by a cord running
over a pulley that is attached to the frame at O, and a stop prevents
collar B from moving. The frame is rotating at the rate 0 = 12 rad/s
and r = 0.6 ft when the stop is removed, allowing collar A to move out
along rod OE. Neglecting friction and the mass of the frame, deter-
mine, for the position r = 1.2 ft, (a) the transverse component of the
velocity of collar A, (b) the tension in the cord and the acceleration of
collar A relative to the rod OE.
D
B
Fig. P12.92
A
E
applied mechanics 2
PROBLEM 3.12
An object is launched at a speed of 20.0 m/s from the top of a tall tower. The height y
of the object with respect to the base of the tower as a function of the timet elapsed
from launch is y(t) = -4.90t² + 19.32t + 60, where y is in meters and t is in seconds.
Determine:
13. the height H of the tower.
50 m
c. 70 m
d. 80 m
а.
b.
60 m
14. the launch angle.
с. 75.35°
d. 77.35°
а.
71.35°
b.
73.35°
15. the horizontal distance traveled by the object before it hits the ground.
с. 32.28 m
d. 34.28 m
a.
28.28 m
b.
30.28 m
Chapter 14 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - Prob. 14.3PCh. 14.1 - Prob. 14.4PCh. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9, assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - Prob. 14.16PCh. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - Prob. 14.19PCh. 14.1 - Prob. 14.20PCh. 14.1 - Prob. 14.21PCh. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - Prob. 14.23PCh. 14.1 - Prob. 14.24PCh. 14.1 - Prob. 14.25PCh. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation HO=rmv+HG between the angular...Ch. 14.1 - Prob. 14.28PCh. 14.1 - Prob. 14.29PCh. 14.1 - Show that the relation MA=HA, where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - Prob. 14.32PCh. 14.2 - Prob. 14.33PCh. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Prob. 14.35PCh. 14.2 - Prob. 14.36PCh. 14.2 - Prob. 14.37PCh. 14.2 - 14.38 Two hemispheres arc held together by a cord...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - Prob. 14.41PCh. 14.2 - 14.41 and 14.42 In a game of pool, ball A is...Ch. 14.2 - Prob. 14.43PCh. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - Prob. 14.45PCh. 14.2 - Prob. 14.46PCh. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Prob. 14.49PCh. 14.2 - Three small spheres A, B, and C, each of mass m,...Ch. 14.2 - Prob. 14.51PCh. 14.2 - Prob. 14.52PCh. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Prob. 14.55PCh. 14.2 - Prob. 14.56PCh. 14.3 - A stream of water with a density of = 1000 kg/m3...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - Prob. 14.59PCh. 14.3 - Prob. 14.60PCh. 14.3 - Prob. 14.61PCh. 14.3 - Prob. 14.62PCh. 14.3 - Prob. 14.63PCh. 14.3 - Prob. 14.64PCh. 14.3 - Prob. 14.65PCh. 14.3 - Prob. 14.66PCh. 14.3 - Prob. 14.67PCh. 14.3 - Prob. 14.68PCh. 14.3 - Prob. 14.69PCh. 14.3 - Prob. 14.70PCh. 14.3 - Prob. 14.71PCh. 14.3 - Prob. 14.72PCh. 14.3 - Prob. 14.73PCh. 14.3 - Prob. 14.74PCh. 14.3 - Prob. 14.75PCh. 14.3 - Prob. 14.76PCh. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - Prob. 14.78PCh. 14.3 - Prob. 14.79PCh. 14.3 - Prob. 14.80PCh. 14.3 - Prob. 14.81PCh. 14.3 - Prob. 14.82PCh. 14.3 - Prob. 14.83PCh. 14.3 - Prob. 14.84PCh. 14.3 - Prob. 14.85PCh. 14.3 - Prob. 14.86PCh. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - Prob. 14.88PCh. 14.3 - Prob. 14.89PCh. 14.3 - Prob. 14.90PCh. 14.3 - Prob. 14.91PCh. 14.3 - Prob. 14.92PCh. 14.3 - A rocket sled burns fuel at the constant rate of...Ch. 14.3 - Prob. 14.94PCh. 14.3 - Prob. 14.95PCh. 14.3 - Prob. 14.96PCh. 14.3 - Prob. 14.97PCh. 14.3 - Prob. 14.98PCh. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb, including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - Prob. 14.102PCh. 14.3 - Prob. 14.103PCh. 14.3 - Prob. 14.104PCh. 14 - Three identical cars are being unloaded from an...Ch. 14 - Prob. 14.106RPCh. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - Prob. 14.108RPCh. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - Prob. 14.110RPCh. 14 - Prob. 14.111RPCh. 14 - Prob. 14.112RPCh. 14 - Prob. 14.113RPCh. 14 - Prob. 14.114RPCh. 14 - Prob. 14.115RPCh. 14 - A chain of length l and mass m falls through a...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
How is the hydrodynamic entry length defined for flow in a pipe? Is the entry length longer in laminar or turbu...
Fluid Mechanics Fundamentals And Applications
What is the importance of modeling in engineering? How are the mathematical models for engineering processes pr...
HEAT+MASS TRANSFER:FUND.+APPL.
A 20-lb force is applied to the control rod AB as shown. Knowing that the length of the rod is 9 in. and that t...
Statics and Mechanics of Materials
3.3 It is known that a vertical force of 200 lb is required to remove the nail at C from the board. As the nail...
Vector Mechanics for Engineers: Statics
A biological fluid moves at a flow rate of m=0.02kg/s through a coiled, thin-walled, 5-mm-diameter tube submerg...
Fundamentals of Heat and Mass Transfer
A nozzle at A discharges water with an initial velocity of 36 ft/s at an angle with the horizontal. Determine ...
Vector Mechanics for Engineers: Dynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 8 in. 6 in. B PROBLEM 13.58 A 3-lb collar is attached to a spring and slides without friction along a circular rod in a horizontal plane. The spring has an undeformed length of 7 in. and a constant k = 1.5 lb/in. Knowing that the collar is in equilibrium at A and is given a slight push to get it moving, determine the velocity of the collar (a) as it passes through B, (b) as it passes through C. VB = = 11.66 ft/s 15.01 ft/s VC =arrow_forwardPROBLEM 13.19 The system shown, consisting of a 20-kg collar A and a 10-kg counterweight B, is at rest when a constant 500-N force is applied to collar A. (a) Determine the velocity of A just before it hits the support at C. (b) Solve part a assuming that the counterweight B is replaced by a 98.1-N downward force. Ignore friction and the mass of the pulleys. V₁ = 3.16 m/s = 5.48 m/sarrow_forwardThe crate/box shown has a square shape, an in-plane size of 10 ft X 10 ft and a uniformly distributed 300 lb weight. It is hung on an overhead roller conveyer and being transported. The crate is at rest when a horizontal force P of 40 lb is applied at the point E, which is 4 ft above the bottom of the box. Knowing that the crate starts to move from rest and at the instant t it reaches a speed of 9.3 ft/s. Neglect the frictions at the hinges A and B and between the rollers and the rail track. Answer the following questions: a) Draw FBD and KD of the box. b) What kind of motion the crate is moving in? c) Write out the motion equations. d) Find the acceleration at the crate's mass center and the pin forces at A and B. e) Determine the distance d and time t of the motion when the speed reaches 9.3 ft/s. A B P 10 ft E 4 ft D + 10 ftarrow_forward
- A thin circular rod is supported in a vertical plane by a bracket at A. Attached to the bracket and loosely wound around the rod is a spring of constant k= 3 lb/ft and undeformed length equal to the arc of circle AB. An 8-oz collar C , not attached to the spring, can slide without friction along the rod. Knowing that the collar is released from rest at an angle 0 with the vertical, determine (a) the smallest value of 0 for which the collar will pass through D and reach point A, (b) the velocity of the collar as it reaches point A.arrow_forwardPravinbhaiarrow_forwardA 10-lb collar is attached to a spring and slides without friction along a fixed rod in a vertical plane. The spring has an undeformed length of 14 in. and a constant k= 4 lb/in. Knowing that the collar is released from rest in the position shown, determine the force exerted by the rod on the collar at (a) point A, (b) point B. Both these points are on the curved portion of the rod.arrow_forward
- A 32,000-lb airplane lands on an aircraft carrier and is caught by an arresting cable. The cable is inextensible and is paid out at A and b from mechanisms located below deck and consisting of pistons moving in long oil-filled cylinders. Knowing that the piston-cylinder system maintains a constant tension of 85 kips in the cable during the entire landing, determine the landing speed of the airplane if it travels a distance d= 95 ft after being caught by the cable.arrow_forwardPart 3 A lift cage in a mining operation has a mass of 1000kg when empty. When a fully laden with a mass of 700kg it is lowered with uniform acceleration such that after 200m its velocity is 25m/s. By constructing free body diagrams and using D'Alembert's principle determine: (a) the tension in the cable of the lift. (b) the reaction force exerted by the load in the lift.arrow_forwardProblem 12.F11 Disk A rotates in a horizontal plane about a vertical axis at the constant rate. Slider B has a mass m and moves in a frictionless slot cut in the disk. The slider is attached to a spring of constant k, which is undeformed when r = 0. Knowing that the slider is released with no radial velocity in the position r=ro, draw a FBD and KD at an arbitrary distance r from O. Spring Fig. P12.F11 60arrow_forward
- 2 kg The centers of two spheres A and B with masses mA 1 kg and mg are a distance ro 1m apart. B is fixed in space, and A is initially at rest. Using Eq. (1.5) on p. 3, which is Newton's universal law of gravitation, determine the speed with which A impacts B if the radii of the two spheres are A = 0.05 m and FB = 0.15 m. Assume that the two masses are infinitely far from any other mass so that they are only influenced by their mutual attraction. Τοarrow_forwardQ.1. A block of mass m = 0.5 kg is pushed against a horizontal spring of spring constant k = 450 N/m and negligible mass. The spring is compressed a distance x from equilibrium, and then released from rest. The block travels along a frictionless horizontal surface and reaches point B with a speed vg = 12 m/s. Take g = 10 m/s2. The compression of the spring is: a. x = 0.16 m b. x = 0.467 m c. x = 0.533 m B. d. x = 0.4 marrow_forwardA small package of weight W is projected into a vertical return loop at A with a velocity v0 . The package travels without friction along a circle of radius r and is deposited on a horizontal surface at C. For each of the two loops shown, determine (a) the smallest velocity v0 for which the package will reach the horizontal surface at C, (b) the corresponding force exerted by the loop on the package as it passes point B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY