(a)
Find the altitude at which stage A of the rocket is released.
(a)
Answer to Problem 14.102P
The altitude at which stage A of the rocket is released is
Explanation of Solution
Given information:
Consider the initial mass of the rocket is denoted by
The rate of consumption of the fuel is denoted by q.
The velocity of the rocket after time t is denoted by v.
The acceleration due to gravity is denoted by g.
Refer Problem 14.96.
The mass of the rocket is
The mass of the stage A and B is
Show the unit conversion of the mass as follows:
The rate of fuel consumption is
The relative velocity of the rocket is
Calculation:
Show the thrust force (P) of the rocket as follows:
Show the combined mass (m) of the rocket and the unspent fuel as follows:
Show the weight force (W) as follows:
Show the acceleration (a) of the rocket as follows:
Modify Equation (3) using (2) and (1).
Show the velocity of the rocket as follows:
Integrate above Equation with respect to time.
Show the displacement of the rocket as follows:
Integrate above Equation with respect to time.
Consider the value of z as follows:
Differentiate the above Equation with respect to time t.
Consider the value of the
Substitute
Modify Equation (4) using Equation (5) and (6).
Take the lower and upper limit of the integral as
Substitute 1 for
The mass of the fuel is
The velocity of the rocket is
The rate of the fuel consumption is
Calculate the time taken (t) as follows:
Consider the first stage:
The initial velocity and initial distance covered are
Calculate the initial mass of the rocket
Calculate the final velocity of the rocket using the relation:
Substitute 0 for
Calculate the altitude
Substitute 0 for
Thus, the altitude
(b)
Find the altitude at which the fuel of both stages are consumed.
(b)
Answer to Problem 14.102P
The altitude at which the fuel of both stages are consumed is
Explanation of Solution
Given information:
Calculation:
Consider the fuel of both the stages are consumed.
Calculate the final mass
Calculate the altitude
Substitute
Thus, the altitude
Want to see more full solutions like this?
Chapter 14 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- I need handwritten solution with sketches for eacharrow_forwardGiven answers to be: i) 14.65 kN; 6.16 kN; 8.46 kN ii) 8.63 kN; 9.88 kN iii) Bearing 6315 for B1 & B2, or Bearing 6215 for B1arrow_forward(b) A steel 'hot rolled structural hollow section' column of length 5.75 m, has the cross-section shown in Figure Q.5(b) and supports a load of 750 kN. During service, it is subjected to axial compression loading where one end of the column is effectively restrained in position and direction (fixed) and the other is effectively held in position but not in direction (pinned). i) Given that the steel has a design strength of 275 MN/m², determine the load factor for the structural member based upon the BS5950 design approach using Datasheet Q.5(b). [11] ii) Determine the axial load that can be supported by the column using the Rankine-Gordon formula, given that the yield strength of the material is 280 MN/m² and the constant *a* is 1/30000. [6] 300 600 2-300 mm wide x 5 mm thick plates. Figure Q.5(b) L=5.75m Pinned Fixedarrow_forward
- Q1: For the following force system, find the moments with respect to axes x, y, and zarrow_forwardQ10) Body A weighs 600 lb contact with smooth surfaces at D and E. Determine the tension in the cord and the forces acting on C on member BD, also calculate the reaction at B and F. Cable 6' 3' wwwarrow_forwardHelp ارجو مساعدتي في حل هذا السؤالarrow_forward
- Q3: Find the resultant of the force system.arrow_forwardQuestion 1 A three-blade propeller of a diameter of 2 m has an activity factor AF of 200 and its ratio of static thrust coefficient to static torque coefficient is 10. The propeller's integrated lift coefficient is 0.3.arrow_forward(L=6847 mm, q = 5331 N/mm, M = 1408549 N.mm, and El = 8.6 x 1014 N. mm²) X A ΕΙ B L Y Marrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY