Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259638091
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.2, Problem 14.46P
To determine
Find the velocity of space vehicle’s part A.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 300-kg space vehicle traveling with a velocity v0 = (360 m/s)ipasses through the origin O at t = 0. Explosive charges then separate the vehicle into three parts A, B, and C , with mass, respectively, 150 kg, 100 kg, and 50 kg. Knowing that at t = 4 s, the positions of parts A and B are observed to be A (1170 m, -290 m, –585 m) and B (1975 m, 365 m, 800 m), determine the corresponding position of part C . Neglect the effect of gravity.
A 480-kg space vehicle traveling with a velocity vo = (405 m/s)i passes through the origin O at t= 0. Explosive charges then
separate the vehicle into three parts, A, B, and C, with mass, respectively, 240 kg, 100 kg, and 140 kg. Knowing that at t = 4 s,
the positions of parts A and B are observed to be A (1170 m, -290 m, -585 m) and B (1975 m, 365 m, 800 m), determine the
corresponding position of part C. Neglect the effect of gravity.
The position of part Cis rc=
m)i + (
m)j +
m)k.
Q2. As shown in the image below, the freight cars A and B are approaching each
other, and they have a mass of mA = 23 Mg and mg = 14 Mg, respectively. The
directions of their initial velocities are shown in the image, and the speeds are VA,1
4.3 m/s and v³,1 = 2.9 m/s. Determine the velocity of A after collision if the cars
collide and rebound, such that B moves to the right with a speed of 1.8 m/s. Right is
considered the positive direction and negative sign must be included if A moves to
the left after the collision. Please pay attention: the numbers may change since they
are randomized. Your answer must include 3 places after the decimal point, and
proper Sl unit.
A
Your Answer:
VA,1
Answer
units
B
VB.1
=
Chapter 14 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases in rapid...Ch. 14.1 - Car A weighing 4000 lb and car B weighing 3700 lb...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9, assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - Prob. 14.16PCh. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - 14.19 and 14.20 Cruiser A was traveling east at 60...Ch. 14.1 - 14.19 and 14.20 Cruiser A was traveling east at 60...Ch. 14.1 - Prob. 14.21PCh. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - Prob. 14.24PCh. 14.1 - Prob. 14.25PCh. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation HO=rmv+HG between the angular...Ch. 14.1 - Prob. 14.28PCh. 14.1 - Prob. 14.29PCh. 14.1 - Show that the relation MA=HA, where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - In Prob. 14.3, determine the energy lost (a) when...Ch. 14.2 - Prob. 14.33PCh. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Prob. 14.35PCh. 14.2 - Prob. 14.36PCh. 14.2 - Prob. 14.37PCh. 14.2 - Ball B is suspended from a cord of length l...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - Prob. 14.41PCh. 14.2 - 14.41 and 14.42 In a game of pool, ball A is...Ch. 14.2 - Prob. 14.43PCh. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - Prob. 14.45PCh. 14.2 - Prob. 14.46PCh. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each weighing 2 lb,...Ch. 14.2 - Three small spheres A, B, and C, each of mass m,...Ch. 14.2 - Prob. 14.51PCh. 14.2 - Prob. 14.52PCh. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Prob. 14.56PCh. 14.3 - A stream of water with a density of = 1000 kg/m3...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Prob. 14.60PCh. 14.3 - Prob. 14.61PCh. 14.3 - Prob. 14.62PCh. 14.3 - Prob. 14.63PCh. 14.3 - Prob. 14.64PCh. 14.3 - Prob. 14.65PCh. 14.3 - Prob. 14.66PCh. 14.3 - Prob. 14.67PCh. 14.3 - Prob. 14.68PCh. 14.3 - Prob. 14.69PCh. 14.3 - Prob. 14.70PCh. 14.3 - Prob. 14.71PCh. 14.3 - Prob. 14.72PCh. 14.3 - Prob. 14.73PCh. 14.3 - Prob. 14.74PCh. 14.3 - Prob. 14.75PCh. 14.3 - Prob. 14.76PCh. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - Prob. 14.78PCh. 14.3 - Prob. 14.79PCh. 14.3 - Prob. 14.80PCh. 14.3 - Prob. 14.81PCh. 14.3 - Prob. 14.82PCh. 14.3 - Prob. 14.83PCh. 14.3 - Prob. 14.84PCh. 14.3 - Prob. 14.85PCh. 14.3 - Prob. 14.86PCh. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - Prob. 14.88PCh. 14.3 - Prob. 14.89PCh. 14.3 - Prob. 14.90PCh. 14.3 - Prob. 14.91PCh. 14.3 - Prob. 14.92PCh. 14.3 - A rocket sled burns fuel at the constant rate of...Ch. 14.3 - Prob. 14.94PCh. 14.3 - Prob. 14.95PCh. 14.3 - Prob. 14.96PCh. 14.3 - Prob. 14.97PCh. 14.3 - Prob. 14.98PCh. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb, including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - Prob. 14.102PCh. 14.3 - Prob. 14.103PCh. 14.3 - Prob. 14.104PCh. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 50-kg mother and her 26-kg son are sledding down...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - Prob. 14.108RPCh. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - Prob. 14.110RPCh. 14 - A 6000-kg dump truck has a 1500-kg stone block...Ch. 14 - For the ceiling-mounted fan shown, determine the...Ch. 14 - Prob. 14.113RPCh. 14 - Prob. 14.114RPCh. 14 - Prob. 14.115RPCh. 14 - A chain of length l and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2. As shown in the image below, the freight cars A and Bare approaching each other, and they have a mass of ma 24 Mg and mB = 13 Mg, respectively. The directions of their initial velocities are shown in the image, and the speeds are vA,1 = 2.9 m/s and vB,1 = 2.7 m/s. Determine the velocity of A after collision if the cars collide and rebound, such that Bmoves to the right with a speed of 2.1 m/s. Right is considered the positive direction and negative sign must be included if A moves to the left after the collision. Please pay attention: the numbers may change since they are randomized. Your answer must include 3 places after the decimal point, and proper Sl unit. VA,1 A VB,1 В Your Answer: Answer unitsarrow_forwardTwo cars collide at an intersection. Car A, with a mass of 2027 kg, is going from west to east, while car B, of mass 1535 kg, is going from north to south at 18 m/s. As a result of this collision, the two cars stick together and they moved at an angle of 65° south of east from the point of impact. How fast (in m/s) were the entangled cars moving just after the collision? North |B West - East Southarrow_forward1. The two blocks shown weigh W = 60lb and W, = 40lb . If the blocks are released from rest from the position shown, determine the velocity of block B A В after it has moved 10 ft. Use Constraint Equations (for pulley), Equation of Motion (Newton's second law), and the Principle of Work and Energy. NOT allowed to use Chegg or other such websites. NOT allowed to use Chegg or other such websites B.arrow_forward
- A system consists of three identical 14.32-lb particles A, B, and C. The velocities of the particles are, respectively, vA = vA j, vB = vBi, and vC = vCk. The angular momentum of the system about O expressed in ft·lb·s is HO = -1.2k. Determine the velocities of the particles. (You must provide an answer before moving to the next part.) The velocity of particle A is ( ft/s)j. The velocity of particle B is ( ft/s)i. The velocity of particle C is ( ft/s)k.arrow_forwardPlease asaparrow_forwardQ4. As shown in the image below, the freight cars A and B are approaching each other, and they have a mass of mA = 23 Mg and mB = 15 Mg, respectively. The directions of their initial velocities are shown in the image, and the speeds are VÃ,1 · 2.5 m/s and VB,1 = 2.1 m/s. If the two cars collide and get stuck together, then move with the same velocity, determine their common velocity after the collision. Right is considered the positive direction and negative sign must be included if they move to the left after the collision. Please pay attention: the numbers may change since they are randomized. Your answer must include 3 places after the decimal point, and proper Sl unit. A Your Answer: VA,1 Answer units B VB.1arrow_forward
- A rocketship has 9 modules each with a mass of 15 200 kg and moves at a speed of 7.0 km/s. One of the modules is explosively propelled away from the rocketship at a speed of 1350 km/h with respect to the rocketship, opposite in direction from the original travel direction of the rocket ship.What is the resulting change in the speed of the rocketship?arrow_forward2/81 A long-range artillery rifle at A is aimed at an angle of 45° with the horizontal, and its shell is just able to clear the mountain peak at the top of its trajectory. Determine the magnitude u of the muzzle velocity, the height H of the mountain above sea level, and the range R to the sea. Ans. u = 396 m/s, H = 4600 m, R = 16.58 km -8 km A 45° Elev. 600 m Sea levelarrow_forwardat an amusement park there are 200 kg bumper cars A, B, and C that have riders with masses of 40kg, 60 kg, and 35 kg, respectively. Car A is moving to the right with a velocity Va=2m/s when it hits stationary car B. The coefficient of restitution between each car is 0.8. Determine the velocity of car C so that after car B collides with car C the velocity of car B is zero.arrow_forward
- Three different objects, all with different masses, are initially at rest at the bottom of a set of steps. Each step is of uniform height d. The mass of each object is a multiple of the base mass m: object1 has mass 4.00m, object 2 has mass 1.96m, and object 3 has mass m. When the objects are at the bottom of the steps, define the total gravitational potential energy of the three-object system to be zero. If the objects are then relocated as shown, what is the new total potential energy of the system? Each answer requires the numerical coefficient to an 2 algebraic expression. Each algebraic expression is given using some combination of the variables m, g, and d, where g is the acceleration due to gravity. Enter only the numerical coefficient. (Example: If the answer is 1.23mgd, just enter 1.23)arrow_forwardBlock A is initially held at rest. Find how far it will descend before its velocity is momentarily zero. (This is different from finding the point where there would be equilibrium).arrow_forward:Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY