VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
12th Edition
ISBN: 9781260265453
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14.2, Problem 14.35P
(a)
To determine
Prove that
(b)
To determine
Find the energy of car A and B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4. A 750 kg hammer is used to drive a 2500 kg pile into some loosely packed sand. The hammer is released from
a height of 2.5 m above the top of the pile and is seen to rebound to a maximum height of 0.15 m above the
point of impact. Determine:
(a) the velocity of the pile immediately after impact,
(b) the coefficient of restitution, and
(c) the average force exerted by the hammer on the pile if the impact takes place over 0.08 s.
2.5 m
P
Ans. vp, = -2.62 m/s, e = 0.62, Favg = 81.9 kN
%3D
14.35 Two automobiles A and B, of mass mĄ and m³, respectively, are
traveling in opposite directions when they collide head on. The impact is as-
sumed perfectly plastic, and it is further assumed that the energy absorbed
by each automobile is equal to its loss of kinetic energy with respect to a
moving frame of reference attached to the mass center of the two-vehicle
system. Denoting by EA and EB, respectively, the energy absorbed by auto-
mobile A and by automobile B, (a) show that EA/EB = mB/mA, that is, the
amount of energy absorbed by each vehicle is inversely proportional to its
mass, (b) compute EA and EB, knowing that mA = 2400 kg and mg = 1350 kg
and that the speeds of A and B are, respectively, 135 km/h and 90 km/h.
VB
B
Q.2
Cylinder A is dropped from 2.4 m onto cylinder B, which is resting on a
spring of constant k=300 N/m. Assuming perfectly plastic impact between
0.5 kg
cylinders A and B, determine:
a. The maximum deflection of cylinder B after impact
b. The loss of energy during impact.
2.4 m
During impact, ignore gravity and spring forces
B 2.5 kg
Chapter 14 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
Ch. 14.1 - A 30-g bullet is fired with a horizontal velocity...Ch. 14.1 - Two identical 1350-kg automobiles A and B are at...Ch. 14.1 - An airline employee tosses two suitcases in rapid...Ch. 14.1 - Car A weighing 4000 lb and car B weighing 3700 lb...Ch. 14.1 - Two swimmers A and B, of weight 190 lb and 125 lb,...Ch. 14.1 - A 180-lb man and a 120-lb woman stand side by side...Ch. 14.1 - A 40-Mg boxcar A is moving in a railroad...Ch. 14.1 - Two identical cars A and B are at rest on a...Ch. 14.1 - A 20-kg base satellite deploys three...Ch. 14.1 - For the satellite system of Prob. 14.9, assuming...
Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three identical 19.32-lb...Ch. 14.1 - A system consists of three particles A, B, and C....Ch. 14.1 - For the system of particles of Prob. 14.13,...Ch. 14.1 - A 13-kg projectile is passing through the origin O...Ch. 14.1 - Prob. 14.16PCh. 14.1 - A 2-kg model rocket is launched vertically and...Ch. 14.1 - An 18-kg cannonball and a 12-kg cannonball are...Ch. 14.1 - 14.19 and 14.20 Cruiser A was traveling east at 60...Ch. 14.1 - 14.19 and 14.20 Cruiser A was traveling east at 60...Ch. 14.1 - Prob. 14.21PCh. 14.1 - Two spheres, each of mass m, can slide freely on a...Ch. 14.1 - In a game of pool, ball A is moving with a...Ch. 14.1 - Prob. 14.24PCh. 14.1 - Prob. 14.25PCh. 14.1 - In a scattering experiment, an alpha particle A is...Ch. 14.1 - Derive the relation HO=rmv+HG between the angular...Ch. 14.1 - Prob. 14.28PCh. 14.1 - Prob. 14.29PCh. 14.1 - Show that the relation MA=HA, where HA is defined...Ch. 14.2 - Determine the energy lost due to friction and the...Ch. 14.2 - In Prob. 14.3, determine the energy lost (a) when...Ch. 14.2 - Prob. 14.33PCh. 14.2 - Determine the energy lost as a result of the...Ch. 14.2 - Prob. 14.35PCh. 14.2 - Prob. 14.36PCh. 14.2 - Prob. 14.37PCh. 14.2 - Ball B is suspended from a cord of length l...Ch. 14.2 - A 15-lb block B starts from rest and slides on the...Ch. 14.2 - A 40-lb block B is suspended from a 6-ft cord...Ch. 14.2 - Prob. 14.41PCh. 14.2 - 14.41 and 14.42 In a game of pool, ball A is...Ch. 14.2 - Prob. 14.43PCh. 14.2 - In a game of pool, ball A is moving with the...Ch. 14.2 - Prob. 14.45PCh. 14.2 - Prob. 14.46PCh. 14.2 - Four small disks A, B, C, and D can slide freely...Ch. 14.2 - In the scattering experiment of Prob. 14.26, it is...Ch. 14.2 - Three identical small spheres, each weighing 2 lb,...Ch. 14.2 - Three small spheres A, B, and C, each of mass m,...Ch. 14.2 - Prob. 14.51PCh. 14.2 - Prob. 14.52PCh. 14.2 - Two small disks A and B of mass 3 kg and 1.5 kg,...Ch. 14.2 - Two small disks A and B of mass 2 kg and 1 kg,...Ch. 14.2 - Three small identical spheres A, B, and C, which...Ch. 14.2 - Prob. 14.56PCh. 14.3 - A stream of water with a density of = 1000 kg/m3...Ch. 14.3 - A jet ski is placed in a channel and is tethered...Ch. 14.3 - Tree limbs and branches are being fed at A at the...Ch. 14.3 - Prob. 14.60PCh. 14.3 - Prob. 14.61PCh. 14.3 - Prob. 14.62PCh. 14.3 - Prob. 14.63PCh. 14.3 - Prob. 14.64PCh. 14.3 - Prob. 14.65PCh. 14.3 - Prob. 14.66PCh. 14.3 - Prob. 14.67PCh. 14.3 - Prob. 14.68PCh. 14.3 - Prob. 14.69PCh. 14.3 - Prob. 14.70PCh. 14.3 - Prob. 14.71PCh. 14.3 - Prob. 14.72PCh. 14.3 - Prob. 14.73PCh. 14.3 - Prob. 14.74PCh. 14.3 - Prob. 14.75PCh. 14.3 - Prob. 14.76PCh. 14.3 - The propeller of a small airplane has a...Ch. 14.3 - Prob. 14.78PCh. 14.3 - Prob. 14.79PCh. 14.3 - Prob. 14.80PCh. 14.3 - Prob. 14.81PCh. 14.3 - Prob. 14.82PCh. 14.3 - Prob. 14.83PCh. 14.3 - Prob. 14.84PCh. 14.3 - Prob. 14.85PCh. 14.3 - Prob. 14.86PCh. 14.3 - Solve Prob. 14.86, assuming that the chain is...Ch. 14.3 - Prob. 14.88PCh. 14.3 - Prob. 14.89PCh. 14.3 - Prob. 14.90PCh. 14.3 - Prob. 14.91PCh. 14.3 - Prob. 14.92PCh. 14.3 - A rocket sled burns fuel at the constant rate of...Ch. 14.3 - Prob. 14.94PCh. 14.3 - Prob. 14.95PCh. 14.3 - Prob. 14.96PCh. 14.3 - Prob. 14.97PCh. 14.3 - Prob. 14.98PCh. 14.3 - Determine the distance traveled by the spacecraft...Ch. 14.3 - A rocket weighs 2600 lb, including 2200 lb of...Ch. 14.3 - Determine the altitude reached by the spacecraft...Ch. 14.3 - Prob. 14.102PCh. 14.3 - Prob. 14.103PCh. 14.3 - Prob. 14.104PCh. 14 - Three identical cars are being unloaded from an...Ch. 14 - A 50-kg mother and her 26-kg son are sledding down...Ch. 14 - An 80-Mg railroad engine A coasting at 6.5 km/h...Ch. 14 - Prob. 14.108RPCh. 14 - Mass C, which has a mass of 4 kg, is suspended...Ch. 14 - Prob. 14.110RPCh. 14 - A 6000-kg dump truck has a 1500-kg stone block...Ch. 14 - For the ceiling-mounted fan shown, determine the...Ch. 14 - Prob. 14.113RPCh. 14 - Prob. 14.114RPCh. 14 - Prob. 14.115RPCh. 14 - A chain of length l and mass m falls through a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Three blocks (1,2,3) of mass 3.00 kg, 2.00 kg, 1.00 kg sit block 1 block 2 block 3 linearly 10.0 cm apart from each other on a frictionless surface. •> 3kg A 25 g bullet is shot at the first block, it travels through the first block, and embeds itself into the second block (without falling over) which then collides into the third block. a. Assuming the final collision is elastic, and the third block has a final velocity of 5.00 m/s, what is the velocity of block 2 just before it collides into block 3? b. What is the velocity of the bullet before it embeds itself into block 2? c. Assuming the bullet slowed down by only 10% while it travelled through block 1, what was the speed of block 1 after the bullet traveled through it?arrow_forward1. Space probes may be separated from their launchers by exploding bolts. (They bolt away from one another.) Suppose a 4100-kg satellite uses this method to separate from the 1200-kg remains of its launcher, and that 3000 J of kinetic energy is supplied to the two parts. Assume that the satellite and launcher are at rest before separation and the direction of the satellite's velocity after separation is positive. Gravity is negligible compared to the force of explosion. Consider: Let the subscripts i and f denote the initial and final velocities and the subscripts s and/ denote the satellite and the launcher, respectively. How many knowns are there and how many unknowns? satellite launcher Before launch Vsf satellite launcher V₁ After launcharrow_forwardA 1-oz bullet is fired with a horizontal velocity of 750 mi/h into the 18-lb wooden beam AB. The beam is suspended from a collar of negligible mass that can slide along a horizontal rod. Neglecting friction between the collar and the rod, determine the maximum angle of rotation of the beam during its subsequent motion.arrow_forward
- 2 kg The centers of two spheres A and B with masses mA 1 kg and mg are a distance ro 1m apart. B is fixed in space, and A is initially at rest. Using Eq. (1.5) on p. 3, which is Newton's universal law of gravitation, determine the speed with which A impacts B if the radii of the two spheres are A = 0.05 m and FB = 0.15 m. Assume that the two masses are infinitely far from any other mass so that they are only influenced by their mutual attraction. Τοarrow_forwardA 45-g bullet is fired with a velocity of 400 m/s at 0 = 30° into a 9-kg square panel of side b = 200 mm. Knowing that h = 150 mm and that the panel is initially at rest, determine (a) the velocity of the center of the panel immediately after the bullet becomes embedded, (b) the impulsive reaction at A, assuming that the bullet becomes embedded in 2 ms.arrow_forwardA uniform slender rod AB of mass m is at rest on a frictionless horizontal surface when hook C engages a small pin at A. Knowing that the hook is pulled upward with a constant velocity v0 , draw the impulse-momentum diagram that is needed to determine the impulse exerted on the rod at A and B. Assume that the velocity of the hook is unchanged and that the impact is perfectly plastic.arrow_forward
- A chain, which weights 1 kg and is 1 m long, is lowered from a height of 1.5 m. How big is the force with which the chain acts on the ground at the moment when half of the chain is already on the ground. Assume that the collision of individual parts of the chain is completely inflexible.arrow_forward2. Block 1 of mass m, slides from rest along a frictionless ramp from height h = 1.60 m and then collides (completely inelasticly) with stationary block 2 of mass m2 = 3.00 m.. After the collision, the two blocks slide into a region where the coefficient of kinetic friction is µx = 0.300 and come to a stop in distance d within that region. a) What is the speed of m, when it reaches the bottom of the ramp? b) What is the speed of the combination of the two blocks after the collision? c) What is the value of distance d?arrow_forward5.78arrow_forward
- Member ABC has a mass of 2.4 kg and is attached to a pin support at B. A 0.8-kg sphere D strikes the end of member ABC with a vertical velocity v1=3 m/s. Knowing that L=0.75 m and that the coefficient of restitution between the sphere and member ABC is 0.5, answer the following: A D B 1. Which of the following has impulse/s that is/are NOT considered negligible during the impact of the sphere to member AB? I. Weight of Member ABC II. Weight of Sphere D III. Impact force between Sphere D and Member ABC IV. The reactions at pin B III only IV only I and II only III and IVonly →arrow_forwardA 20-g bullet is fired at a 5-kg square panel of side b = 300 mm. The velocity of the bullet just before the collision is 500 m/s, with = 15°, and is embedded into the plate after impact with a duration of 2.5 × 10 seconds. Knowing that the horizontal component of the impulsive reaction at A is zero, which of the following momentum-impulse diagrams represents the given situation?arrow_forwardQuestion 3 An uncontrolled 850 kg car strikes squarely a motorway crash cushion in which the car is brought to rest by successively crushing steel barrels. The length of the crash cushion is 4.6 m, and the magnitude Fof the force required to crush the barrels as a function of the distance x the car has moved into the cushion is given by (0 < a < (1arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY