The 45° strain rosette is mounted on the surface of a shell. The following readings are obtained for each gage:
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
Statics and Mechanics of Materials (5th Edition)
- The 45° strain rosette shown below, is mounted on the surface of a thin shell. The following readings are obtained for each gage: €a = -200 x 10-6 , €b = 300 x 10-6 , and ec = 250 x 10-6. Determine the principal strains. b а 45° 45° 45°arrow_forward1arrow_forwardThe strain components, ex= 940 micro strain, ey= -360 micro strain and yxy=830micro strain are given for a point in body subjected to plane strain. Determine; a. Magnitude of the principal strains b. The direction of the principal strain axes c. The maximum in-plane shear strain. Confirm your answer by means of Mohr's circle of strain and determine the linear strain on an axis inclined at 20 degrees clockwise to the direction of eyarrow_forward
- A 45° strain rosette was placed on the surface of a critical point on an engineering part. The following were measured: Ea = 400 μ C ли 45° mm mm 45° ли Gauge a was aligned with the x-axis. a. Determine Ex, Ey, Yxy b. Using Mohr's Circle, find the principal strains and the maximum shear strain at that point, and find the orientation of the principal planes from the given x-y axes. y ли & = 450 μ ஆ b a mm X mm & c = 500 μ y+ ос mm mm eb 10₂ Xarrow_forwardQ4 A three strain gages have been attached directly to a piston used to raise a medical chair, the strain gages give strains as ɛa = 80 µ , Ep = 60 µ and Ec = 20 µ . Determine the principal strains and the principal strain directions for the given set of strains. And Compute the strain in a direction -30° (clockwise) with the x axis. a,x A c.y Pumparrow_forwardThe strain components Ex, Ey, and Yxy are given for a point in a body subjected to plane strain. Using Mohr's circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle 0p, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch. Ex = 0 μE, Ey = 310 με, Yxy = 280 μrad. Enter the angle such that -45° ≤ 0,≤ +45° Answer: Ep1 = Ep2 = Ymax in-plane = Yabsolute max. = 0p = με με urad uradarrow_forward
- The 45° strain rosette is mounted on the surface of a pressure vessel. The following readings are obtained for each gage: Pa = 475(10-6), Pb = 250(10-6), and Pc = -360(10-6). Determine the in-plane principal strainsarrow_forwardQ4 A three strain gages have been attached directly to a piston used to raise a medical chair, the strain gages give strains as Ea = 80 µ , Eb = 60 µ and Ec = 20 u . Determine the principal strains and the principal strain directions for the given set of strains. And Compute the strain in a direction -30° (clockwise) with the x axis. 45 Pumparrow_forwardFor the state of a plane strain with εx, εy and γxy components: (a) construct Mohr’s circle and (b) determine the equivalent in-plane strains for an element oriented at an angle of 30° clockwise. εx = 255 × 10-6 εy = -320 × 10-6 γxy = -165 × 10-6arrow_forward
- please solve with all stepsarrow_forward1. A loading causes the member to deform into the dashed shape. Explain how to determine the normal strains ɛcd and ɛAB. The displacement A and the lettered dimensions are known. B L. L/2 A 2 L (а) L. B L/2 A 2 L (b)arrow_forwardThe strain components ɛ, Ey, and yxy are given for a point in a body subjected to plane strain. Using Mohr's circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle 0p, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch. Ex = 0 µE, ɛ, = 320 µɛ, Vxy = 240 µrad. Enter the angle suen that -45° s 0,s+45°.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY