
Concept explainers
(a)
The time period of oscillating system.
(a)

Explanation of Solution
Introduction:
Time period of oscillating system is the time required by system to complete one oscillation.
The free body diagram of system is drawn below.
Here,
Write the expression for time period of the pendulum.
Here,
Write the expression for resultant force in horizontal direction.
Substitute
Here,
Write the expression for resultant force in horizontal direction.
Substitute
Here,
Rearrange the above expression in term of
Substitute
Substitute
Rearrange the above expression in term of
Compare the above expression with the equation of differential equation of S.H.M.
The value of angular frequency is
Substitute
Conclusion:
Thus, the time period of oscillating system is
(b)
The value of force constant.
(b)

Explanation of Solution
Given:
The mass of bob is
The first time period of the pendulum is
The second time period of the pendulum is
Formula:
The free body diagram of system is drawn below.
Here,
Write the expression for time period of the pendulum.
Here,
Write the expression for resultant force in horizontal direction.
Substitute
Here,
Write the expression for resultant force in horizontal direction.
Substitute
Here,
Rearrange the above expression in term of
Substitute
Substitute
Rearrange the above expression in term of
Compare the above expression with the equation of differential equation of S.H.M.
The value of angular frequency is
Substitute
Calculation:
For
Substitute
For
Substitute
Conclusion:
Thus, the value of force constant is
Want to see more full solutions like this?
Chapter 14 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Can someone helparrow_forwardCan someone help mearrow_forward3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forwardA particle in a box between x=0 and x=6 has the wavefunction Psi(x)=A sin(2πx). How muchenergy is required for the electron to make a transition to Psi(x)= A’ sin(7π x/3). Draw anapproximate graph for the wavefunction. Find A and A'arrow_forwardA proton is moving with 10^8 m/s speed. Find the De Broglie wavelength associated with theproton and the frequency of that wave.arrow_forwardFind the wavelength of the photon if a (Li--) electron makes a transition from n=4 to n=3. Findthe Bohr radius for each state.arrow_forwardA photon with wavelength 3000 nm hits a stationary electron. After the collision electron isscattered to 60 degrees. Find the wavelength and frequency of the scattered photon.arrow_forwardA metal has threshold frequency 10^15. Calculate the maximum kinetic energy of the ejectedelectron if a laser beam with wavelength 1.5 10^-7 m is projected on the metal.arrow_forwardDetermine the direction of the vector V, B, or ♬ that is missing from the pair of vectors shown in each scenario. Here, u is the velocity vector of a moving positive charge, B is a constant and uniform magnetic field, and F is the resulting force on the moving charge. 1. 2. 3. B OB F 4. ↑F F 5. 怔 ↑ ↑F Answer Bank 6. ↑ TE Farrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





