EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
6th Edition
ISBN: 9781319321710
Author: Mosca
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 14, Problem 34P

(a)

To determine

The distance travelled by the particle during the time t=0sto2s .

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The time period of the particle is 8.0s .

The amplitude of the oscillation of the particle is 12cm .

Formula used:

The position of the particle is given as:

  x=Acos(ωt+δ)   ............. (1)

Here, x is the position of the particle, A is the amplitude, ω is the angular frequency, t is the time and δ is the phase constant.

Write the expression for the angular frequency of oscillation.

  ω=2πT   ............. (2)

Substitute 8.0s for T in equation (2)

  ω=2π8.0sω=π4s-1

Write the expression for the initial position of the particle with amplitude and phase constant.

  x0=Acosδ

Simplify the above equation we get.

  δ=cos1(x0A)   ............. (3)

Substitute 0 for x0 in equation (3).

  δ=cos1(0A)δ=π2

Substitute π2 for δ , 12cm for A and π4s-1 for ω in equation (1)

  x=Acos(ωt+δ)x=(12cm)cos(π4s -1t+π2)

Now the distance particle travels in initial time tinitial and final time tfinal is:

  x=(12cm)cos[(π4s1)tfinal+π2]((12cm)cos[( π 4 s 1)tinitial+π2])   ............. (4)

Calculation:

Substitute 2.0s for tfinal and 0s for tinitial in equation (4).

  x=(12cm)cos[( π 4 s 1)2.0s+π2](( 12cm)cos[( π 4 s 1 )0s+ π 2])x=(12cm)cos[( π 4 s 1)2.0s+π2](( 12cm)cosπ2)x=12cm

Conclusion:

The distance the particle travels at t=0sto2s is x=12cm .

(b)

To determine

The distance travelled by the particle at time t=0.2sto0.4s.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The time period of the particle is 8.0s .

The amplitude of the oscillation of the particle is 12cm .

Formula used:

The position of the particle is given as:

  x=Acos(ωt+δ)   ............. (1)

Here, x is the position of the particle, A is the amplitude, ω is the angular frequency, t is the time and τ is the phase constant.

Calculation:

Substitute 4.0s for tfinal and 2.0s for tinitial in equation (4).

  x=(12cm)cos[( π 4 s 1)4.0s+π2](( 12cm)cos[( π 4 s 1 )2s+ π 2])x=(12cm)cos[3π2](12cm)cos(π)x=12cm

Conclusion:

The position of the particle is 12cm .

(c)

To determine

The distance travelled by the particle t=0sto1s .

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The time period of the particle is 0.8s .

The amplitude of the oscillation of the particle is 12cm .

Formula used:

The position of the particle is given as:

  x=Acos(ωt+δ)

Calculation:

Substitute 1s for tfinal and 0s for tinitial in equation (4).

  x=(12cm)cos[( π 4 s 1)1.0s+π2](( 12cm)cos[( π 4 s 1 )0s+ π 2])x=(12cm)cos( 3π4)x=8.48cm

Conclusion:

The position of the particle is 8.48cm .

(d)

To determine

The distance travelled by the particle t=1.0sto2.0s .

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

The time period of the particle is 0.8s .

The amplitude of the oscillation of the particle is 12cm .

Formula used:

The position of the particle is given as:

  x=Acos(ωt+δ)

Calculation:

Substitute 2.0s for tfinal and 1.0s for tinitial in equation (4).

  x=(12cm)cos[( π 4 s 1)2.0s+π2](( 12cm)cos[( π 4 s 1 )1.0s+ π 2])x=(12cm)cos[π](( 12cm)cos[ 3π 4])x=3.52cm

Conclusion:

The position of the particle is 3.52cm .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURI
Plz no chatgpt pls will upvote
3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1

Chapter 14 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Prob. 18PCh. 14 - Prob. 19PCh. 14 - Prob. 20PCh. 14 - Prob. 21PCh. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Prob. 26PCh. 14 - Prob. 27PCh. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - Prob. 32PCh. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Prob. 35PCh. 14 - Prob. 36PCh. 14 - Prob. 37PCh. 14 - Prob. 38PCh. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Prob. 42PCh. 14 - Prob. 43PCh. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Prob. 46PCh. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Prob. 49PCh. 14 - Prob. 50PCh. 14 - Prob. 51PCh. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - Prob. 56PCh. 14 - Prob. 57PCh. 14 - Prob. 58PCh. 14 - Prob. 59PCh. 14 - Prob. 60PCh. 14 - Prob. 61PCh. 14 - Prob. 62PCh. 14 - Prob. 63PCh. 14 - Prob. 64PCh. 14 - Prob. 65PCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Prob. 68PCh. 14 - Prob. 69PCh. 14 - Prob. 70PCh. 14 - Prob. 71PCh. 14 - Prob. 72PCh. 14 - Prob. 73PCh. 14 - Prob. 74PCh. 14 - Prob. 75PCh. 14 - Prob. 76PCh. 14 - Prob. 77PCh. 14 - Prob. 78PCh. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - Prob. 81PCh. 14 - Prob. 82PCh. 14 - Prob. 83PCh. 14 - Prob. 84PCh. 14 - Prob. 85PCh. 14 - Prob. 86PCh. 14 - Prob. 87PCh. 14 - Prob. 88PCh. 14 - Prob. 89PCh. 14 - Prob. 90PCh. 14 - Prob. 91PCh. 14 - Prob. 92PCh. 14 - Prob. 93PCh. 14 - Prob. 94PCh. 14 - Prob. 95PCh. 14 - Prob. 96PCh. 14 - Prob. 97PCh. 14 - Prob. 98PCh. 14 - Prob. 99PCh. 14 - Prob. 100PCh. 14 - Prob. 101PCh. 14 - Prob. 103PCh. 14 - Prob. 104PCh. 14 - Prob. 105PCh. 14 - Prob. 106P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
SIMPLE HARMONIC MOTION (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=XjkUcJkGd3Y;License: Standard YouTube License, CC-BY