University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 90P
A fluid of a constant density flows through a reduction in a pipe. Find an equation for be change in pressure, in terms of v1, A2, A2, and the density.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 14 Solutions
University Physics Volume 1
Ch. 14 - Check Your Understanding If the reservoir in...Ch. 14 - Check Your Understanding Mercury is a hazardous...Ch. 14 - Check Your Understanding Would a hydraulic press...Ch. 14 - Which of the following substances are fluids at...Ch. 14 - Why are gases easier to compress tan liquids and...Ch. 14 - Explain how the density of air varies with...Ch. 14 - The images show a glass of ice water filled to the...Ch. 14 - How is pressure related to sharpness of a knife...Ch. 14 - Why is a force exerted by a static fluid on a...Ch. 14 - Imagine a remote location near the Nott Pole, a...
Ch. 14 - In ballet, dancing en pointe (on the tips of the...Ch. 14 - Atmospheric pressure exerts a large force (equal...Ch. 14 - Why does atmospheric pressure decrease more...Ch. 14 - The image shows how sandbags placed around a leak...Ch. 14 - Is there a net force on a dam due to atmospheric...Ch. 14 - Does atmospheric pressure add to the gas pressure...Ch. 14 - You can break a strong wine bottle by pounding a...Ch. 14 - Explain why the fluid reaches equal levels on...Ch. 14 - Suppose the master cylinder in a hydraulic system...Ch. 14 - More force is required to pull the plug in a full...Ch. 14 - Do fluids exert buoyant forces in a “weightless"...Ch. 14 - Will the same ship float higher in salt water than...Ch. 14 - Marbles dropped into a partially filled bathtub...Ch. 14 - Mary figures in the show streamlines. Explain why...Ch. 14 - You can squirt water from a garden hose a...Ch. 14 - Water is shot nearly vertically upward in a...Ch. 14 - Look back to figure 14.29. Answer the following...Ch. 14 - A tube with a narrow segment designed to enhance...Ch. 14 - Some chimney pipes have a T-shape, with a...Ch. 14 - Is there a limit to the height to which an...Ch. 14 - Why is it preferable for airplanes to take off...Ch. 14 - Roofs are sometimes pushed off vertically a...Ch. 14 - It is dangerous to stud close to railroad tracks...Ch. 14 - Water pressure inside a hose nozzle can be less...Ch. 14 - David rolled down the window on his car while...Ch. 14 - Based on Bernoulli’s equation, what are three...Ch. 14 - The old rubber boot below has leaks. To what...Ch. 14 - Water pressure inside a hose nozzle can be less...Ch. 14 - Explain why the viscosity of a liquid decreases...Ch. 14 - When paddling a canoe upstream, it is wisest to...Ch. 14 - Plumbing usually includes air-filled tubes tear...Ch. 14 - Doppler ultrasound can be used to measure the...Ch. 14 - Sink drains often have a device such as that shown...Ch. 14 - Gold is sold by the troy ounce (31.103 g). What is...Ch. 14 - Mercury is commonly supplied in flasks containing...Ch. 14 - What is the mass deep breath of air having a...Ch. 14 - A straightforward method of finding the density of...Ch. 14 - Suppose you have a coffee with a circular...Ch. 14 - A rectangular gasoline tank bold 30.0 kg of...Ch. 14 - A trash compactor can compress its contents to...Ch. 14 - A 2.50-kg steel gasoline can holds 20.0 L of...Ch. 14 - What is the density of 18.0-karat gold that is a...Ch. 14 - The tip of a nail exerts tremendous pressure when...Ch. 14 - A glass tube mercury. What would be the height of...Ch. 14 - The greatest ocean depths on Earth are found in...Ch. 14 - Verigy that the SI of hpg is N/m2.Ch. 14 - What pressure is exerted the bottom of a gas tank...Ch. 14 - A dam is used to hold back a river. The dam has a...Ch. 14 - Find ae gauge and absolute pressures in be balloon...Ch. 14 - How tall must be to measure blood pressure as high...Ch. 14 - Assuming bicycle tires are perfectly flexible and...Ch. 14 - Pascal’s Principle and Hydraulics 59. How much...Ch. 14 - What force must exerted on the master cylinder of...Ch. 14 - A host pours the remnants of several of wine into...Ch. 14 - A certain hydraulic system is designed to exert a...Ch. 14 - Verify that work input equals work output for a...Ch. 14 - What fraction of ice is submerged when it floats...Ch. 14 - If a person's body has a density of 995 kg/m3,...Ch. 14 - A rock with a mass of 540 g in air is found to...Ch. 14 - Archimedes' principle can be used to calculate the...Ch. 14 - Calculate the buoyant force a 200-L helium...Ch. 14 - What is density of a woman floats in fresh water...Ch. 14 - A man has a mass of 80 kg and a density of...Ch. 14 - A simple compass cute made by placing a small bar...Ch. 14 - What percentage of an iron anchor’s weight will be...Ch. 14 - Referring to Figure 14.20, prove that the buoyant...Ch. 14 - A 75.0-kg floats in freshwater 3.00% of his volume...Ch. 14 - What is the average flow rate in cm3/s of gasoline...Ch. 14 - The heart of a resting adult pumps blood at a rate...Ch. 14 - The Huka Falls on the Waikato River is one of New...Ch. 14 - (a) Estimate the time it would take to a private...Ch. 14 - What is the fluid speed a hose a 9.00-cm diameter...Ch. 14 - Water is moving at a velocity of 2.00 m/s through...Ch. 14 - Prove the sped of an incompressible fluid through...Ch. 14 - Water emerges straight down from a faucet with a...Ch. 14 - Verify that pressure has units of enery per unit...Ch. 14 - Suppose you have a wind speed gauge like the pitot...Ch. 14 - If be pressure reading of your pitot tube is 15.0...Ch. 14 - Every few years, winds in Boulder, Colorado,...Ch. 14 - What is the pressure drop due to the Bernoulli...Ch. 14 - (a) Using Bernoulli's equation, show that be...Ch. 14 - A container of water has a cross-sectional area of...Ch. 14 - A fluid of a constant density flows through a...Ch. 14 - (a) Calculate the retarding force due to viscosity...Ch. 14 - The arterioles (small arteries) leading to organ...Ch. 14 - A spherical particle falling at a terminal speed...Ch. 14 - Using the equation of the previous problem, find...Ch. 14 - A skydiver will reach a terminal velocity when the...Ch. 14 - (a) Verify that a 19.0% decrease in laminar flow...Ch. 14 - When physicians diagnose arterial blockages, they...Ch. 14 - An oil gusher shoots crude 25.0 m the through a...Ch. 14 - Concrete is pumped from a cement mixer to the...Ch. 14 - Verify that flow of oil is laminar for an oil...Ch. 14 - Calculate Reynolds numbers for flow of trough (a)...Ch. 14 - A fire hose has an inside diameter of 6.40 cm....Ch. 14 - At what rate might turbulence begin to develop in...Ch. 14 - Before digital storage devices, such as the memory...Ch. 14 - Water towers store water above the level of...Ch. 14 - The aqueous humor in a person's eye is exerting a...Ch. 14 - (a) Convert normal blood pressure readings of 120...Ch. 14 - Pressure cookers have been around for more than...Ch. 14 - Bird bones have air pockets to reduce their...Ch. 14 - In an immersion measurement of a woman's density,...Ch. 14 - Some have a density slightly less than that of...Ch. 14 - The human circulation system has approximately...Ch. 14 - The flow of blood through a 2.00106 m -radius...Ch. 14 - The left ventricle of a resting adult's heart...Ch. 14 - A sump pump (used to drain water from be basement...Ch. 14 - A glucose solution being administered with an IV...Ch. 14 - A small artery has a length of 1.1103m and a...Ch. 14 - Angioplasty is a technique in which arteries...Ch. 14 - Suppose a blood vessel's radius is decreased to...Ch. 14 - The pressure dam early in problems section...Ch. 14 - The temperature of atmosphere is not always...Ch. 14 - A submarine is stranded on the bottom of the ocean...Ch. 14 - Logs sometimes float vertically a lake because one...Ch. 14 - Scurrilous con artists have been known to...Ch. 14 - The inside volume of a house is equivalent to that...Ch. 14 - A garden hose with a diameter of 2.0 cm is used to...Ch. 14 - A frequency quoted rule of thumb aircraft design...Ch. 14 - Two pipes of equal and constant diameter leave a...Ch. 14 - Fluid originally flows through a tube at a rate of...Ch. 14 - During a marathon race, a runner's blood flow...Ch. 14 - Water supplied to a house by a water main has a...Ch. 14 - Gasoline is piped underground from refineries to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A solid conducting wire of radius R runs parallel to the z-axis and carries a current density given by J = J0(1...
Essential University Physics: Volume 2 (3rd Edition)
A machine does work at a rate given by P = ct2, where c = 18 W/s2 and t is time. Find the work done between t =...
Essential University Physics: Volume 1 (3rd Edition)
Two long, straight wires are parallel and 10 cm apart. One cans a current of 2.0 A, the other a current of 5.0 ...
University Physics Volume 2
91. What happens to the water level in a glass of water when a floating ice cube in the glass melts? Similarly,...
Conceptual Physical Science (6th Edition)
11. A ball thrown horizontally at 25 m/s travels a horizontal distance of 50 m before hitting the ground. From...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Archimedes' principle can be used to calculate the density of a fluid as well as that of a solid. Suppose a chunk of iron with a mass of 390.0 g in air is found to have an apparent mass of 350.5 g when completely submerged in an unknown liquid. (a) What mass of fluid does the iron displace? (b) What is the volume of iron, using its density as given Table 14.1? (c) Calculate the fluid's density and identify it.arrow_forward(a) Using Bernoulli's equation, show that be measured fluid speed v for a pitot tube, like the one in figure 14.32(b), is given by v=( 2gh)1/h , where h is be height of be manometer fluid, p' is the density of the manometer fluid, p is the density of the moving fluid, and g is be acceleration due to gravity. (Note that v is indeed proportional to the square root of h, as stated in text) (b) Calculate v for moving air if a mercury manometer's h is 0.200 m. Figure 14.32 Measurement of fluid speed on Bernoulli’s principle. (a) A manometer is connected to two tubes close together and small enough not to disturb the flow. Tube 1 is open at the end facing the flow. A dead spot having zero speed is created there. Tube 2 has an opening on the side, so the fluid has a speed v across; thus, pressure there drops. The difference in pressure at the manometer is 12v22 , so h is proportional to . 12v22 (b) This type of velocity measuring device is a Prandtl tube, also known as a pitot tube.arrow_forward(a) Using Bernoulli's equation, show that the measured fluid speed v for a pitot tube, like the one in Figure 12.7(b), is given by v=( 2gh)1/2 , where h is the height of the manometer fluid, is the density of the manometer fluid, is the density of the moving fluid, and g is the acceleration due to gravity. (Note that v is indeed proportional to the square root of h, as stated in the text.) (b) Calculate v for moving air if a mercury manometer's h is 0.200 m. Figure 12.7 Measurement of fluid speed based on Bernoulli's principle. (a) A manometer is connected to two that are close together and small enough not to disturb the flow. Tube 1 is open at the end facing the flow. A dead spot having zero speed is created there. Tube 2 has an opening on the side, and so the fluid has a speed V across the opening; thus, pressure there drops. The difference in pressure at the manometer is 12v22 , and so h is proportional to 12v22 . (b) This type of velocity measuring device is a Prandtl tube, also known as a pitot tube.arrow_forward
- A container of water has a cross-sectional area of A=0.1m2 . A piston sits top of the water (see be following figure). There is a spout located 0.15 m from the bottom of tank, open to the atmosphere, and a stream of water exits the spout. The cross sectional area of the spat is As=7.0104m2 . (a) What is the velocity of the water as it leaves the spout? (b) If the opening of the spout is located 1.5 m above the grand, how far from be pout does water hit the floor? Ignore friction and dissipative forces.arrow_forwardIn an immersion measurement of a woman's density, she is found to have a mass of 62.0 kg in air and an apparent mass of 0.0850 kg when completely submerged with lungs empty. (a) What mass of water does she displace? (b) What is her volume? (c) Calculate her density. (d) If her lung capacity is 1.75 L is she able to float without treading water with her lungs filled with air?arrow_forwardWater is moving at a velocity of 2.00 m/s through a hose with an internal diameter of 1.60 cm. (a) What is the flow rate in liters per second? (b) The fluid velocity in this hose's nozzle is 15.0 m/s. What is the nozzle's inside diameter?arrow_forward
- What is the difference between flow rate and fluid velocity? How are they related?arrow_forwardWhat fraction of an iceberg floating in the ocean is above sea level? Assume the density of the iceberg is 917 kg/m3.arrow_forwardLiquid toxic waste with a density of 1752 kg/m3 is flowing through a section of pipe with a radius of 0.312 m at a velocity of 1.64 m/s. a. What is the velocity of the waste after it goes through a constriction and enters a second section of pipe with a radius of 0.222 m? b. If the waste is under a pressure of 850,000 Pa in the first section of pipe, what is the pressure in the second (constricted) section of pipe?arrow_forward
- A small artery has a length of 1.1103m and a radius of 2.55105m . If the pressure drop across the artery is 1.3 kPa, what is the flow rate through artery? (Assume Eat the temperature 37°C)arrow_forwardHow would you determine the density of an irregularly shaped rock?arrow_forwardFigure P15.52 shows a Venturi meter, which may be used to measure the speed of a fluid. It consists of a Venturi tube through which the fluid moves and a manometer used to measure the pressure difference between regions 1 and 2. The fluid of density tube moves from left to right in the Venturi tube. Its speed in region 1 is v1, and its speed in region 2 is v2. The necks cross-sectional area is A2, and the cross-sectional area of the rest of the tube is A1. The manometer contains a fluid of density mano. a. Do you expect the fluid to be higher on the left side or the right side of the manometer? b. The speed v2 of the fluid in the neck comes from measuring the difference between the heights (yR yL) of the fluid on the two sides of manometer. Derive an expression for v2 in terms of (yR yL), A1, A2, tube, and mano. FIGURE P15.52arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY