University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 101P
Calculate Reynolds numbers for flow of trough (a) a nozzle a radius of 0.250 cm and (b) a garden hose with a radius of 0.900 cm, when be nozzle is attached to hose. The flow rate through hose and nozzle is 0.500 L/s. Can flow in either possibly be laminar?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The de-excitation of a state occurs by competing emission and relaxation processes. If the relaxation mechanisms are very effective:a) the emission of radiation is largeb) the emission of radiation is smallc) the emission occurs at a shorter wavelengthd) the de-excitation occurs only by emission processes
m
C
A block of mass m slides down a ramp of height hand
collides with an identical block that is initially at rest.
The two blocks stick together and travel around a loop of
radius R without losing contact with the track. Point A is
at the top of the loop, point B is at the end of a horizon-
tal diameter, and point C is at the bottom of the loop, as
shown in the figure above. Assume that friction between
the track and blocks is negligible.
(a) The dots below represent the two connected
blocks at points A, B, and C. Draw free-body dia-
grams showing and labeling the forces (not com
ponents) exerted on the blocks at each position.
Draw the relative lengths of all vectors to reflect
the relative magnitude of the forces.
Point A
Point B
Point C
(b) For each of the following, derive an expression in
terms of m, h, R, and fundamental constants.
i. The speed of moving block at the bottom of
the ramp, just before it contacts the stationary
block
ii. The speed of the two blocks immediately…
The velocity of an elevator is given by the graph shown.
Assume the positive direction is upward.
Velocity (m/s)
3.0
2.5
2.0
1.5
1.0
0.5
0
0
5.0
10
15
20
25
Time (s)
(a) Briefly describe the motion of the elevator.
Justify your description with reference to the
graph.
(b) Assume the elevator starts from an initial position
of y = 0 at t=0. Deriving any numerical values
you
need from the graph:
i. Write an equation for the position as a
function of time for the elevator from
t=0 to t = 3.0 seconds.
ii. Write an equation for the position as a
function of time for the elevator from t = 3.0
seconds to t = 19 seconds.
(c) A student of weight mg gets on the elevator
and rides the elevator during the time interval
shown in the graph. Consider the force of con-
tact, F, between the floor and the student. How
Justify your answer with reference to the graph
does F compare to mg at the following times?
and your equations above.
i. = 1.0 s
ii. = 10.0 s
Chapter 14 Solutions
University Physics Volume 1
Ch. 14 - Check Your Understanding If the reservoir in...Ch. 14 - Check Your Understanding Mercury is a hazardous...Ch. 14 - Check Your Understanding Would a hydraulic press...Ch. 14 - Which of the following substances are fluids at...Ch. 14 - Why are gases easier to compress tan liquids and...Ch. 14 - Explain how the density of air varies with...Ch. 14 - The images show a glass of ice water filled to the...Ch. 14 - How is pressure related to sharpness of a knife...Ch. 14 - Why is a force exerted by a static fluid on a...Ch. 14 - Imagine a remote location near the Nott Pole, a...
Ch. 14 - In ballet, dancing en pointe (on the tips of the...Ch. 14 - Atmospheric pressure exerts a large force (equal...Ch. 14 - Why does atmospheric pressure decrease more...Ch. 14 - The image shows how sandbags placed around a leak...Ch. 14 - Is there a net force on a dam due to atmospheric...Ch. 14 - Does atmospheric pressure add to the gas pressure...Ch. 14 - You can break a strong wine bottle by pounding a...Ch. 14 - Explain why the fluid reaches equal levels on...Ch. 14 - Suppose the master cylinder in a hydraulic system...Ch. 14 - More force is required to pull the plug in a full...Ch. 14 - Do fluids exert buoyant forces in a “weightless"...Ch. 14 - Will the same ship float higher in salt water than...Ch. 14 - Marbles dropped into a partially filled bathtub...Ch. 14 - Mary figures in the show streamlines. Explain why...Ch. 14 - You can squirt water from a garden hose a...Ch. 14 - Water is shot nearly vertically upward in a...Ch. 14 - Look back to figure 14.29. Answer the following...Ch. 14 - A tube with a narrow segment designed to enhance...Ch. 14 - Some chimney pipes have a T-shape, with a...Ch. 14 - Is there a limit to the height to which an...Ch. 14 - Why is it preferable for airplanes to take off...Ch. 14 - Roofs are sometimes pushed off vertically a...Ch. 14 - It is dangerous to stud close to railroad tracks...Ch. 14 - Water pressure inside a hose nozzle can be less...Ch. 14 - David rolled down the window on his car while...Ch. 14 - Based on Bernoulli’s equation, what are three...Ch. 14 - The old rubber boot below has leaks. To what...Ch. 14 - Water pressure inside a hose nozzle can be less...Ch. 14 - Explain why the viscosity of a liquid decreases...Ch. 14 - When paddling a canoe upstream, it is wisest to...Ch. 14 - Plumbing usually includes air-filled tubes tear...Ch. 14 - Doppler ultrasound can be used to measure the...Ch. 14 - Sink drains often have a device such as that shown...Ch. 14 - Gold is sold by the troy ounce (31.103 g). What is...Ch. 14 - Mercury is commonly supplied in flasks containing...Ch. 14 - What is the mass deep breath of air having a...Ch. 14 - A straightforward method of finding the density of...Ch. 14 - Suppose you have a coffee with a circular...Ch. 14 - A rectangular gasoline tank bold 30.0 kg of...Ch. 14 - A trash compactor can compress its contents to...Ch. 14 - A 2.50-kg steel gasoline can holds 20.0 L of...Ch. 14 - What is the density of 18.0-karat gold that is a...Ch. 14 - The tip of a nail exerts tremendous pressure when...Ch. 14 - A glass tube mercury. What would be the height of...Ch. 14 - The greatest ocean depths on Earth are found in...Ch. 14 - Verigy that the SI of hpg is N/m2.Ch. 14 - What pressure is exerted the bottom of a gas tank...Ch. 14 - A dam is used to hold back a river. The dam has a...Ch. 14 - Find ae gauge and absolute pressures in be balloon...Ch. 14 - How tall must be to measure blood pressure as high...Ch. 14 - Assuming bicycle tires are perfectly flexible and...Ch. 14 - Pascal’s Principle and Hydraulics 59. How much...Ch. 14 - What force must exerted on the master cylinder of...Ch. 14 - A host pours the remnants of several of wine into...Ch. 14 - A certain hydraulic system is designed to exert a...Ch. 14 - Verify that work input equals work output for a...Ch. 14 - What fraction of ice is submerged when it floats...Ch. 14 - If a person's body has a density of 995 kg/m3,...Ch. 14 - A rock with a mass of 540 g in air is found to...Ch. 14 - Archimedes' principle can be used to calculate the...Ch. 14 - Calculate the buoyant force a 200-L helium...Ch. 14 - What is density of a woman floats in fresh water...Ch. 14 - A man has a mass of 80 kg and a density of...Ch. 14 - A simple compass cute made by placing a small bar...Ch. 14 - What percentage of an iron anchor’s weight will be...Ch. 14 - Referring to Figure 14.20, prove that the buoyant...Ch. 14 - A 75.0-kg floats in freshwater 3.00% of his volume...Ch. 14 - What is the average flow rate in cm3/s of gasoline...Ch. 14 - The heart of a resting adult pumps blood at a rate...Ch. 14 - The Huka Falls on the Waikato River is one of New...Ch. 14 - (a) Estimate the time it would take to a private...Ch. 14 - What is the fluid speed a hose a 9.00-cm diameter...Ch. 14 - Water is moving at a velocity of 2.00 m/s through...Ch. 14 - Prove the sped of an incompressible fluid through...Ch. 14 - Water emerges straight down from a faucet with a...Ch. 14 - Verify that pressure has units of enery per unit...Ch. 14 - Suppose you have a wind speed gauge like the pitot...Ch. 14 - If be pressure reading of your pitot tube is 15.0...Ch. 14 - Every few years, winds in Boulder, Colorado,...Ch. 14 - What is the pressure drop due to the Bernoulli...Ch. 14 - (a) Using Bernoulli's equation, show that be...Ch. 14 - A container of water has a cross-sectional area of...Ch. 14 - A fluid of a constant density flows through a...Ch. 14 - (a) Calculate the retarding force due to viscosity...Ch. 14 - The arterioles (small arteries) leading to organ...Ch. 14 - A spherical particle falling at a terminal speed...Ch. 14 - Using the equation of the previous problem, find...Ch. 14 - A skydiver will reach a terminal velocity when the...Ch. 14 - (a) Verify that a 19.0% decrease in laminar flow...Ch. 14 - When physicians diagnose arterial blockages, they...Ch. 14 - An oil gusher shoots crude 25.0 m the through a...Ch. 14 - Concrete is pumped from a cement mixer to the...Ch. 14 - Verify that flow of oil is laminar for an oil...Ch. 14 - Calculate Reynolds numbers for flow of trough (a)...Ch. 14 - A fire hose has an inside diameter of 6.40 cm....Ch. 14 - At what rate might turbulence begin to develop in...Ch. 14 - Before digital storage devices, such as the memory...Ch. 14 - Water towers store water above the level of...Ch. 14 - The aqueous humor in a person's eye is exerting a...Ch. 14 - (a) Convert normal blood pressure readings of 120...Ch. 14 - Pressure cookers have been around for more than...Ch. 14 - Bird bones have air pockets to reduce their...Ch. 14 - In an immersion measurement of a woman's density,...Ch. 14 - Some have a density slightly less than that of...Ch. 14 - The human circulation system has approximately...Ch. 14 - The flow of blood through a 2.00106 m -radius...Ch. 14 - The left ventricle of a resting adult's heart...Ch. 14 - A sump pump (used to drain water from be basement...Ch. 14 - A glucose solution being administered with an IV...Ch. 14 - A small artery has a length of 1.1103m and a...Ch. 14 - Angioplasty is a technique in which arteries...Ch. 14 - Suppose a blood vessel's radius is decreased to...Ch. 14 - The pressure dam early in problems section...Ch. 14 - The temperature of atmosphere is not always...Ch. 14 - A submarine is stranded on the bottom of the ocean...Ch. 14 - Logs sometimes float vertically a lake because one...Ch. 14 - Scurrilous con artists have been known to...Ch. 14 - The inside volume of a house is equivalent to that...Ch. 14 - A garden hose with a diameter of 2.0 cm is used to...Ch. 14 - A frequency quoted rule of thumb aircraft design...Ch. 14 - Two pipes of equal and constant diameter leave a...Ch. 14 - Fluid originally flows through a tube at a rate of...Ch. 14 - During a marathon race, a runner's blood flow...Ch. 14 - Water supplied to a house by a water main has a...Ch. 14 - Gasoline is piped underground from refineries to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Why is it necessary to be in a pressurized cabin when flying at 30,000 feet?
Anatomy & Physiology (6th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
With what geologic feature are the earthquakes in the mid-Atlantic associated?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Students are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…arrow_forwardPART Aarrow_forwardanswer both questionarrow_forward
- Only part A.) of the questionarrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardfine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward4) Three point charges of magnitude Q1 = +2.0 μC, Q2 = +3.0 μС, Q3 = = +4.0 μС are located at the corners of a triangle as shown in the figure below. Assume d = 20 cm. (a) Find the resultant force vector acting on Q3. (b) Find the magnitude and direction of the force. d Q3 60° d Q1 60° 60° Q2 darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY