![Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term](https://www.bartleby.com/isbn_cover_images/9781305932302/9781305932302_largeCoverImage.gif)
(a)
The distance between the water surface and the bottom face of the block.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 85CP
The distance between the water surface and the bottom face of the block is
Explanation of Solution
The ice cube is floating in a glass of ice cold water. According to Archimedes principle the upward buoyant force exerted on the ice cube by the ice cold water is equal to the weight of the ice cold water displaced.
Here,
Write the expression for the buoyant force exerted by the ice cold water on ice.
Here,
One of the surface of the ice is parallel to the surface of the water. So dimension of ice cube and water are same.
Write the expression for volume of water in terms of the height and edge length.
Here,
Write the expression for the surface area of water surface.
Here,
Use expressions (IV) in (III).
Use expression (V) in (II) to find
Write the expression for the weight of ice.
Here,
Write the expression for the mass of ice in terms of volume and density.
Here,
Use expression (VIII) in (VII).
Use expressions (VI) and (IX) in expression (I) to find
Conclusion:
Substitute
Therefore, the distance between the water surface and the bottom face of the block is
(b)
The distance from the top of the water to the bottom face of the block.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 85CP
The distance from the top of the water to the bottom face of the block is
Explanation of Solution
Alcohol is poured on top of the water surface so that it forms a layer above the water. After attaining hydrostatic equilibrium also the top of cube is still above the alcohol.
Again apply Archimedes principle. That is the sum of buoyant force exerted by the water surface and alcohol surface is equal to the weight of the ice.
Here,
Write the expression for buoyant force exerted by alcohol.
Here,
Use expressions (XII), (IX) and (VI) in expression (XI) and solve for
Conclusion:
Substitute
Therefore, the distance from the top of the water to the bottom face of the block is
(c)
The thickness of ethyl alcohol required to cause complete coinciding of top surface of ice cube with alcohol layer.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 85CP
A thickness of ethyl alcohol required to cause complete coinciding of top surface of ice cube with alcohol layer is
Explanation of Solution
The ethyl alcohol is added to the surface of water. Thus height of the water layer will be modified. Apply Archimedes principle. The sum of buoyant force exerted by the water and alcohol layer after the addition of ethyl alcohol.
Here,
Write the expression for the new height of water layer.
Here,
Write the expression for the buoyant force exerted by the alcohol layer.
Write the expression for the buoyant force exerted by the water layer after addition of ethyl alcohol.
Use expressions (XVII), (XVI), and (IX) in expression (XIV) and solve for
Conclusion:
Substitute
Therefore, the thickness of ethyl alcohol required to cause complete coinciding of top surface of ice cube with alcohol layer is
Want to see more full solutions like this?
Chapter 14 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- î A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The proton travels 7.20 cm as it comes to rest. (a) Determine the acceleration of the proton. magnitude 5.27e13 direction -X m/s² (b) Determine the initial speed of the proton. 8.71e-6 magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant. m/s direction +X (c) Determine the time interval over which the proton comes to rest. 1.65e-7 Review you equations for constant accelerated motion. sarrow_forwardThree charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and L = 0.750 m.) y 7.00 με 60.0° L 9 -4.00 μC x (a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges. 112 Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors. KN/CI + 64 × Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ (b) Use your answer to part (a) to determine the force on charge q. 240.0 If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN Î + 194.0 × If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mNarrow_forwardIn the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)arrow_forward
- For which value of θ is the range of a projectile fired from ground level a maximum? 90° above the horizontal 45° above the horizontal 55° above the horizontal 30° above the horizontal 60° above the horizontalarrow_forwardA map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forward
- Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forwardNeed complete solution Pleasearrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)