Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 14, Problem 60AP

(a)

To determine

To determine: The appropriate model to describe the system when balloon is stationary.

(a)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The appropriate model to describe the system is particle in equilibrium.

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

If a system remains stationary, the sum of all forces acted on a system in all direction vertical as well as horizontal is equal to zero. This condition is also called is equilibrium condition.

Conclusion:

Therefore, appropriate model to describe the system is particle in equilibrium.

(b)

To determine

To determine: The force equation for the balloon for this model.

(b)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The force equation for the balloon for this model is BFbFHeFs=0 .

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

In equilibrium condition, sum of all forces in vertical direction is equal to zero.

Fy=0Fy=BFbFHeFs=0 (I)

  • B is buoyant force.
  • Fb is the weight of the balloon (envelope)
  • FHe is the weight of the helium gas.
  • Fs is the weight of the string.

Conclusion:

Therefore, the force equation for the balloon for this model is Fy=BFbFHeFs=0 .

(c)

To determine

To determine: The mass of the string in terms of mb , r , ρHe and ρair .

(c)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The mass of the string in the terms of mb , r , ρHe and ρair is 43πr3(ρairρHe)mb .

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

From equation (I),

BFbFHeFs=0

The buoyant force act on the balloon is equal to the displaced volume of the air by the balloon.

Formula to calculate the buoyant force acting on the balloon is,

B=ρairg×43πr3

  • ρair is the density of the air.
  • r is the radius of the balloon.
  • g is the acceleration due to gravity.

Formula to calculate the weight of the balloon is,

Fb=mbg

  • mb is the mass of the balloon.

Formula to calculate the weight of the helium gas is,

FHe=mHeg

  • mHe is the mass of the helium gas.

Formula to calculate the weight of the string is,

Fs=msg

  • ms is the mass of the string.

Substitute ρairg×43πr3 for B , mHeg for FHe , mbg for Fb and msg for Fs in equation (I).

ρairg×43πr3mbgmHegmsg=0

Formula to calculate the mass of the helium gas is,

mHe=ρHe×43πr3

  • ρHe is the density of the helium gas.

Substitute ρHe×43πr3 for mHe in above expression.

ρairg×43πr3mbgρHe×43πr3gmsg=0

Rearrange the above expression for ms

ms=ρair×43πr3ρHe×43πr3mbms=43πr3(ρairρHe)mb

Conclusion:

Therefore, the mass of the string in terms of mb , r , ρHe and ρair is 43πr3(ρairρHe)mb .

(d)

To determine

To determine: The mass of the string.

(d)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The mass of the string is 0.0237kg .

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

From equation (II),

ms=43πr3(ρairρHe)mb

Substitute 1.20kg/m3 for ρair , 0.250kg for mb , 0.4m for r and 0.179kg/m3 for ρHe to find ms .

ms=43π(0.4m)3(1.20kg/m30.179kg/m3)0.250kg=0.0237kg

Conclusion:

Therefore, the mass of the string is 0.0237kg .

(e)

To determine

To determine: The length h of the string if mass of the string is 0.050kg .

(e)

Expert Solution
Check Mark

Answer to Problem 60AP

Answer: The length h of the string is 0.948m if mass of the string is 0.050kg .

Explanation of Solution

Explanation:

Given information: The mass of the balloon is 0.250kg tied to a uniform length 2.00m and mass 0.050kg . The balloon is spherical with radius 0.4m and the density of the air is 1.20kg/m3 .

From equation (II),

ms=43πr3(ρairρHe)mb

The mass of the string of height h is equal to the ms×hl .

Substitute ms×hl for ms in above expression.

ms×hl=43πr3(ρairρHe)mb

Substitute 1.20kg/m3 for ρair , 0.250kg for mb , 0.4m for r , 0.050kg for ms 2.0m for l and 0.179kg/m3 for ρHe to find h .

0.050kg×h2.0m=43π(0.4m)3(1.20kg/m30.179kg/m3)0.250kgh=0.0237kg×2.0m0.050kg=0.948m

Conclusion:

Therefore, the length h of the string is 0.948m if mass of the string is 0.050kg .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 14 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 14 - Prob. 6OQCh. 14 - Prob. 7OQCh. 14 - Prob. 8OQCh. 14 - Prob. 9OQCh. 14 - Prob. 10OQCh. 14 - Prob. 11OQCh. 14 - Prob. 12OQCh. 14 - Prob. 13OQCh. 14 - Prob. 14OQCh. 14 - Prob. 15OQCh. 14 - Prob. 16OQCh. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - Prob. 5CQCh. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - Prob. 9CQCh. 14 - Prob. 10CQCh. 14 - Prob. 11CQCh. 14 - Prob. 12CQCh. 14 - Prob. 13CQCh. 14 - Prob. 14CQCh. 14 - Prob. 15CQCh. 14 - Prob. 16CQCh. 14 - Prob. 17CQCh. 14 - Prob. 18CQCh. 14 - Prob. 19CQCh. 14 - A large man sits on a four-legged chair with his...Ch. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Estimate the total mass of the Earths atmosphere....Ch. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Review. A solid sphere of brass (bulk modulus of...Ch. 14 - Prob. 19PCh. 14 - The human brain and spinal cord are immersed in...Ch. 14 - Blaise Pascal duplicated Torricellis barometer...Ch. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Prob. 26PCh. 14 - A 10.0-kg block of metal measuring 12.0 cm by 10.0...Ch. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - A plastic sphere floats in water with 50.0% of its...Ch. 14 - A spherical vessel used for deep-sea exploration...Ch. 14 - A wooden block of volume 5.24 104 m3 floats in...Ch. 14 - The weight of a rectangular block of low-density...Ch. 14 - Prob. 35PCh. 14 - A hydrometer is an instrument used to determine...Ch. 14 - Prob. 37PCh. 14 - Prob. 38PCh. 14 - Prob. 39PCh. 14 - Water flowing through a garden hose of diameter...Ch. 14 - Prob. 41PCh. 14 - Prob. 42PCh. 14 - Prob. 43PCh. 14 - Prob. 44PCh. 14 - A legendary Dutch boy saved Holland by plugging a...Ch. 14 - Prob. 46PCh. 14 - Water is pumped up from the Colorado River to...Ch. 14 - Prob. 48PCh. 14 - Prob. 49PCh. 14 - Review. Old Faithful Geyser in Yellowstone...Ch. 14 - Prob. 51PCh. 14 - An airplane has a mass of 1.60 104 kg, and each...Ch. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - Decades ago, it was thought that huge herbivorous...Ch. 14 - Prob. 57APCh. 14 - Prob. 58APCh. 14 - Prob. 59APCh. 14 - Prob. 60APCh. 14 - Prob. 61APCh. 14 - The true weight of an object can be measured in a...Ch. 14 - Prob. 63APCh. 14 - Review. Assume a certain liquid, with density 1...Ch. 14 - Prob. 65APCh. 14 - Prob. 66APCh. 14 - Prob. 67APCh. 14 - A common parameter that can be used to predict...Ch. 14 - Evangelista Torricelli was the first person to...Ch. 14 - Review. With reference to the dam studied in...Ch. 14 - Prob. 71APCh. 14 - Prob. 72APCh. 14 - In 1983, the United States began coining the...Ch. 14 - Prob. 74APCh. 14 - Prob. 75APCh. 14 - The spirit-in-glass thermometer, invented in...Ch. 14 - Prob. 77APCh. 14 - Review. In a water pistol, a piston drives water...Ch. 14 - Prob. 79APCh. 14 - Prob. 80APCh. 14 - Prob. 81APCh. 14 - A woman is draining her fish tank by siphoning the...Ch. 14 - Prob. 83APCh. 14 - Prob. 84APCh. 14 - Prob. 85CPCh. 14 - Prob. 86CPCh. 14 - Prob. 87CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning