Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 14, Problem 72AP
To determine

The equilibrium readings of both top scale and bottom scale.

Expert Solution & Answer
Check Mark

Answer to Problem 72AP

The equilibrium reading of the top scale is T=(1ρ0ρFe)mFeg_ and the reading on the bottom scale is n=[mb+mo+(ρoρFe)]g_.

Explanation of Solution

The weight of the iron block is balanced by the sum of tension on spring and the buoyant force exerted on iron block by the oil when viewed from the upper part of the scale.

    T+B=Fg,iron                                                                                                        (I)

Here, T is the tension force on the spring scale, B is the buoyant force on iron block, and Fg,iron is the force of gravity on the iron block.

Write the expression for density of iron block.

    ρiron=mironViron                                                                                                         (II)

Here, ρiron is the density of iron block, miron is the mass of iron block, and Viron is the volume of block.

Rearrange equation (II) to find Viron.

    Viron=mironρiron                                                                                                        (III)

By Archimedes law, volume of iron block dipped in oil is equal to the volume of oil displaced from the jar.

    Vdisplaced oil=mironρiron                                                                                                (IV)

Here, Vdisplaced oil is the volume of the displaced oil.

Write the expression for the buoyant force exerted by the oil on the iron block.

    B=ρoilVirong                                                                                                       (V)

Here, ρoil is the density of oil, Viron is the volume of iron block, and g is the acceleration due to gravity.

Rearrange equation (I) to find T.

    T=Fg,ironB                                                                                                    (VI)

Use expression (V) in (VI) to find T.

    T=Fg,ironρoilVirong                                                                                        (VII)

Write the expression for force of gravity on iron block.

    Fg,iron=mirong                                                                                                 (VIII)

Here, miron is the mass of the iron block.

Use expression (VIII) in (VII).

    T=mirongρoilVirong                                                                                           (IX)

Use expression (III) in (IX) to find T.

    T=mirongρoil(mironρiron)g=(1ρoilρiron)mirong                                                                                   (X)

Now observe the system from the bottom side of scale. Let n be the upward normal force acting on the system.

Write the sum of all the vertical forces acting on the system.

    Fy=T+nFg,beakerFg,oilFg,iron                                                                (XI)

Here, Fy is the sum of vertical forces acting on the system, Fg,beaker is the force of gravity on beaker.

At equilibrium the sum of all vertical forces is equal to zero.

    T+nFg,beakerFg,oilFg,iron=0                                                                     (XII)

Write the expression for Fg,beaker.

    Fg,beaker=mbeakerg                                                                                            (XIII)

Here, mbeaker is the mass of the beaker.

Write the expression for Fg,oil.

    Fg,oil=moilg                                                                                                    (XIV)

Here, moil is the mass of the oil.

Use expressions (XIV), (XIII), and (VIII) in expression (XII) and solve for n.

    T+nmbeakergmoilgmirong=0n=(mbeaker+moil+miron)gT                            (XV)

Substitute expression (X) in (XV) to find n.

    n=(mbeaker+moil+miron)g(1ρoilρiron)mirong=[mbeaker+moil+(ρoilρiron)mFe]g

Conclusion:

Therefore, the equilibrium reading of the top scale is T=(1ρoilρiron)mirong_ and the reading on the bottom scale is n=[mbeaker+moil+(ρoilρiron)]g_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4B. Four electrons are located on the corners of a square, one on each corner, with the sides of the square being 25 cm long. a) Draw a sketch of the scenario and use your sketch to b)  Determine the total force (magnitude and direction) on one of the electrons from the other three?
Portfolio Problem 3. A ball is thrown vertically upwards with a speed vo from the floor of a room of height h. It hits the ceiling and then returns to the floor, from which it rebounds, managing just to hit the ceiling a second time. Assume that the coefficient of restitution between the ball and the floor, e, is equal to that between the ball and the ceiling. Compute e.
Portfolio Problem 4. Consider two identical springs, each with natural length and spring constant k, attached to a horizontal frame at distance 2l apart. Their free ends are attached to the same particle of mass m, which is hanging under gravity. Let z denote the vertical displacement of the particle from the hori- zontal frame, so that z < 0 when the particle is below the frame, as shown in the figure. The particle has zero horizontal velocity, so that the motion is one dimensional along z. 000000 0 eeeeee (a) Show that the total force acting on the particle is X F-mg k-2kz 1 (1. l k. (b) Find the potential energy U(x, y, z) of the system such that U x = : 0. = O when (c) The particle is pulled down until the springs are each of length 3l, and then released. Find the velocity of the particle when it crosses z = 0.

Chapter 14 Solutions

Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term

Ch. 14 - Prob. 6OQCh. 14 - Prob. 7OQCh. 14 - Prob. 8OQCh. 14 - Prob. 9OQCh. 14 - Prob. 10OQCh. 14 - Prob. 11OQCh. 14 - Prob. 12OQCh. 14 - Prob. 13OQCh. 14 - Prob. 14OQCh. 14 - Prob. 15OQCh. 14 - Prob. 16OQCh. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - Prob. 5CQCh. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - Prob. 9CQCh. 14 - Prob. 10CQCh. 14 - Prob. 11CQCh. 14 - Prob. 12CQCh. 14 - Prob. 13CQCh. 14 - Prob. 14CQCh. 14 - Prob. 15CQCh. 14 - Prob. 16CQCh. 14 - Prob. 17CQCh. 14 - Prob. 18CQCh. 14 - Prob. 19CQCh. 14 - A large man sits on a four-legged chair with his...Ch. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Estimate the total mass of the Earths atmosphere....Ch. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Review. A solid sphere of brass (bulk modulus of...Ch. 14 - Prob. 19PCh. 14 - The human brain and spinal cord are immersed in...Ch. 14 - Blaise Pascal duplicated Torricellis barometer...Ch. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Prob. 26PCh. 14 - A 10.0-kg block of metal measuring 12.0 cm by 10.0...Ch. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - A plastic sphere floats in water with 50.0% of its...Ch. 14 - A spherical vessel used for deep-sea exploration...Ch. 14 - A wooden block of volume 5.24 104 m3 floats in...Ch. 14 - The weight of a rectangular block of low-density...Ch. 14 - Prob. 35PCh. 14 - A hydrometer is an instrument used to determine...Ch. 14 - Prob. 37PCh. 14 - Prob. 38PCh. 14 - Prob. 39PCh. 14 - Water flowing through a garden hose of diameter...Ch. 14 - Prob. 41PCh. 14 - Prob. 42PCh. 14 - Prob. 43PCh. 14 - Prob. 44PCh. 14 - A legendary Dutch boy saved Holland by plugging a...Ch. 14 - Prob. 46PCh. 14 - Water is pumped up from the Colorado River to...Ch. 14 - Prob. 48PCh. 14 - Prob. 49PCh. 14 - Review. Old Faithful Geyser in Yellowstone...Ch. 14 - Prob. 51PCh. 14 - An airplane has a mass of 1.60 104 kg, and each...Ch. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - Decades ago, it was thought that huge herbivorous...Ch. 14 - Prob. 57APCh. 14 - Prob. 58APCh. 14 - Prob. 59APCh. 14 - Prob. 60APCh. 14 - Prob. 61APCh. 14 - The true weight of an object can be measured in a...Ch. 14 - Prob. 63APCh. 14 - Review. Assume a certain liquid, with density 1...Ch. 14 - Prob. 65APCh. 14 - Prob. 66APCh. 14 - Prob. 67APCh. 14 - A common parameter that can be used to predict...Ch. 14 - Evangelista Torricelli was the first person to...Ch. 14 - Review. With reference to the dam studied in...Ch. 14 - Prob. 71APCh. 14 - Prob. 72APCh. 14 - In 1983, the United States began coining the...Ch. 14 - Prob. 74APCh. 14 - Prob. 75APCh. 14 - The spirit-in-glass thermometer, invented in...Ch. 14 - Prob. 77APCh. 14 - Review. In a water pistol, a piston drives water...Ch. 14 - Prob. 79APCh. 14 - Prob. 80APCh. 14 - Prob. 81APCh. 14 - A woman is draining her fish tank by siphoning the...Ch. 14 - Prob. 83APCh. 14 - Prob. 84APCh. 14 - Prob. 85CPCh. 14 - Prob. 86CPCh. 14 - Prob. 87CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY