Conduction through the skin. The blood plays an important role in removing heat from the body by bringing this heat directly to the surface where it can radiate away. Nevertheless, this heat must still travel through the skin before it can radiate away. We shall assume that the blood is brought to the bottom layer of skin at a temperature of 37°C and that the outer surface of the skin is at 30.0°C. Skin varies in thickness from 0.50 mm to a few millimeters on the palms and soles, so we shall assume an average thickness of 0.75 mm. A 165 lb, 6 ft person has a surface area of about 2.0 m 2 and loses heat at a net rate of 75 W while resting. On the basis of our assumptions, what is the thermal conductivity of this person’s skin?
Conduction through the skin. The blood plays an important role in removing heat from the body by bringing this heat directly to the surface where it can radiate away. Nevertheless, this heat must still travel through the skin before it can radiate away. We shall assume that the blood is brought to the bottom layer of skin at a temperature of 37°C and that the outer surface of the skin is at 30.0°C. Skin varies in thickness from 0.50 mm to a few millimeters on the palms and soles, so we shall assume an average thickness of 0.75 mm. A 165 lb, 6 ft person has a surface area of about 2.0 m 2 and loses heat at a net rate of 75 W while resting. On the basis of our assumptions, what is the thermal conductivity of this person’s skin?
Conduction through the skin. The blood plays an important role in removing heat from the body by bringing this heat directly to the surface where it can radiate away. Nevertheless, this heat must still travel through the skin before it can radiate away. We shall assume that the blood is brought to the bottom layer of skin at a temperature of 37°C and that the outer surface of the skin is at 30.0°C. Skin varies in thickness from 0.50 mm to a few millimeters on the palms and soles, so we shall assume an average thickness of 0.75 mm. A 165 lb, 6 ft person has a surface area of about 2.0 m2 and loses heat at a net rate of 75 W while resting. On the basis of our assumptions, what is the thermal conductivity of this person’s skin?
- 13-
3.
Shastri recalled reading that for an ideal transformer, "the ratio of the primary voltage to the
secondary voltage is equal to the ratio of the secondary current to the primary current."
Plan and design an experiment to investigate whether the statement above is true.
(8)
•
With the aid of a fully labelled circuit diagram, describe a procedure which can be used to
investigate whether the statement is true. The circuit diagram must include the following
components:
A variable AC voltage supply
•
AC voltmeters
•
AC ammeters
A transformer with adjustable turns ratio
Connecting wires
•
°
A load resistor
answer question 1-6
Chapter 14 Solutions
College Physics Volume 1 (Chs. 1-16); Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics (10th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.