PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 50EAP
To determine
a) Find the expression for the force required to push the cylinder distance x deeper.
b) Find the work done to push 4 cm diameter cylinder 10cm deeper into water.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
Chapter 14 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - Prob. 5CQCh. 14 - Rank in order, from largest to smallest, the...Ch. 14 - a, b, and C in FIGURE Q14.7 have the same volume....Ch. 14 - a, b, and c in FIGURE Q14.7 have the same density....Ch. 14 - Prob. 9CQCh. 14 - Gas flows through the pipe of FIGURE Q14.10. You...
Ch. 14 - Prob. 11CQCh. 14 - Prob. 12CQCh. 14 - Prob. 13CQCh. 14 - What is the volume in mL of 55 g of a liquid with...Ch. 14 - Prob. 2EAPCh. 14 - Prob. 3EAPCh. 14 - A 6.0m12.0m swimming pool slopes linearly from a...Ch. 14 - A 1.0-m-diameter vat of liquid is 2.0 m deep. The...Ch. 14 - Prob. 6EAPCh. 14 - A 3.0-cm-diameter tube is held upright and filled...Ch. 14 - a. What volume of water has the same mass as 8.om3...Ch. 14 - A 50-cm-thick layer of oil floats on a...Ch. 14 - A research submarine has a 20-cm-diameter window...Ch. 14 - A 20-cm-diameter circular cover is placed over a...Ch. 14 - Prob. 12EAPCh. 14 - Prob. 13EAPCh. 14 - Prob. 14EAPCh. 14 - 15. How far must a 2.0-cm-diameter piston be...Ch. 14 - A 6.00-cm-diameter sphere with a mass of 89.3 g is...Ch. 14 - Prob. 17EAPCh. 14 - Prob. 18EAPCh. 14 - Prob. 19EAPCh. 14 - Prob. 20EAPCh. 14 - What is the tension of the string in FIGURE...Ch. 14 - 22. A 10-cm-diameter, 20-cm-tall steel cylinder (=...Ch. 14 - You need to determine the density of a ceramic...Ch. 14 - Prob. 24EAPCh. 14 - Prob. 25EAPCh. 14 - Prob. 26EAPCh. 14 - A long horizontal tube has a square cross section...Ch. 14 - Prob. 28EAPCh. 14 - Prob. 29EAPCh. 14 - Prob. 30EAPCh. 14 - A 2.0 mL syringe has an inner diameter of 6.0 mm,...Ch. 14 - Prob. 32EAPCh. 14 - Prob. 33EAPCh. 14 - Prob. 34EAPCh. 14 - Prob. 35EAPCh. 14 - Prob. 36EAPCh. 14 - Prob. 37EAPCh. 14 - Prob. 38EAPCh. 14 - Prob. 39EAPCh. 14 - Prob. 40EAPCh. 14 - 41. A friend asks you how much pressure is in your...Ch. 14 - Prob. 42EAPCh. 14 - Prob. 43EAPCh. 14 - 44. A U-shaped tube, open to the air on both ends,...Ch. 14 - Prob. 45EAPCh. 14 - Prob. 46EAPCh. 14 - An aquarium of length L, width (front to back) W,...Ch. 14 - Prob. 48EAPCh. 14 - Prob. 49EAPCh. 14 - 50. A cylinder with cross-section area A floats...Ch. 14 - Prob. 51EAPCh. 14 - Prob. 52EAPCh. 14 - Prob. 53EAPCh. 14 - Prob. 54EAPCh. 14 - A plastic "boat" with a square cross section...Ch. 14 - Prob. 56EAPCh. 14 - Prob. 57EAPCh. 14 - Prob. 58EAPCh. 14 - Prob. 59EAPCh. 14 - Prob. 60EAPCh. 14 - Prob. 61EAPCh. 14 - Prob. 62EAPCh. 14 - Prob. 63EAPCh. 14 - Prob. 64EAPCh. 14 - A hurricane wind blows across a 6.0m15.0m flat...Ch. 14 - Prob. 66EAPCh. 14 - Prob. 67EAPCh. 14 - A water tank of height h has a small hole at...Ch. 14 - Prob. 69EAPCh. 14 - Prob. 70EAPCh. 14 - 71. The bottom of a steel "boat" is a piece . The...Ch. 14 - Prob. 72EAPCh. 14 - Prob. 73EAPCh. 14 - Prob. 74EAPCh. 14 - Prob. 75EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forward
- Good explanation it sure experts solve it.arrow_forwardNo chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forward
- No chatgpt pls will upvotearrow_forwardCorrect answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forward
- Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY