EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 48EAP
To determine
To Explain: The look of sun from earth if entire photosphere were the same temperature as of sunspots.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe what the Sun would look like from Earth if the entire photosphere were the same temperature as a sunspot.
62. Pressure of the Photosphere. The gas pressure of the photosphere
changes substantially from its upper levels to its lower levels.
Near the top of the photosphere, the temperature is about 4500 K
and there are about 1.6 x 1016 gas particles per cubic centimeter.
In the middle, the temperature is about 5800 K and there are
about 1.0 x 10" gas particles per cubic centimeter. At the bottom
of the photosphere, the temperature is about 7000 K and there
are about 1.5 × 10" gas particles per cubic centimeter. Use the
ideal gas law (Mathematical Insight 14.2) to compare the
pressures
of each of these layers; explain the reason for the trend
that you find. How do these gas pressures compare with Earth's
atmospheric pressure at sea level?
The Sun's photosphere is
a. the central region where the Sun originates
b. the part of the Sun which the light comes that we see when we look at the Sun with our eyes
c. the hottest region of the Sun
d. the outermost layers of the Sun's atmosphere
e. the first region you would come to when leaving the core
Chapter 14 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 14 - Prob. 1VSCCh. 14 - Prob. 2VSCCh. 14 - Prob. 3VSCCh. 14 - Prob. 1EAPCh. 14 - Prob. 2EAPCh. 14 - Prob. 3EAPCh. 14 - Prob. 4EAPCh. 14 - Prob. 5EAPCh. 14 - Prob. 6EAPCh. 14 - Prob. 7EAP
Ch. 14 - Prob. 8EAPCh. 14 - Prob. 9EAPCh. 14 - Prob. 10EAPCh. 14 - Prob. 11EAPCh. 14 - What are neutrinos? What was the solar neutrino...Ch. 14 - Prob. 13EAPCh. 14 - Prob. 14EAPCh. 14 - Prob. 15EAPCh. 14 - Prob. 16EAPCh. 14 - Prob. 17EAPCh. 14 - Prob. 18EAPCh. 14 - Prob. 19EAPCh. 14 - Prob. 20EAPCh. 14 - Prob. 21EAPCh. 14 - Prob. 22EAPCh. 14 - Prob. 23EAPCh. 14 - Prob. 24EAPCh. 14 - Prob. 25EAPCh. 14 - Prob. 26EAPCh. 14 - Prob. 27EAPCh. 14 - Prob. 28EAPCh. 14 - Prob. 29EAPCh. 14 - Prob. 30EAPCh. 14 - Prob. 31EAPCh. 14 - Prob. 32EAPCh. 14 - Prob. 33EAPCh. 14 - Prob. 34EAPCh. 14 - Prob. 35EAPCh. 14 - Prob. 36EAPCh. 14 - Prob. 37EAPCh. 14 - Prob. 38EAPCh. 14 - Prob. 40EAPCh. 14 - Prob. 41EAPCh. 14 - Prob. 42EAPCh. 14 - Prob. 44EAPCh. 14 - Prob. 45EAPCh. 14 - Prob. 46EAPCh. 14 - Prob. 47EAPCh. 14 - Prob. 48EAPCh. 14 - Prob. 49EAPCh. 14 - Solar Energy Output. Observations over the past...Ch. 14 - Prob. 51EAPCh. 14 - Prob. 52EAPCh. 14 - Prob. 54EAPCh. 14 - Prob. 55EAPCh. 14 - Prob. 56EAPCh. 14 - Prob. 57EAPCh. 14 - Solar Power for the United States. Total annual...Ch. 14 - Prob. 59EAPCh. 14 - The Color of a Sunspot. Use Wien’s law (see...Ch. 14 - Prob. 61EAPCh. 14 - Prob. 62EAPCh. 14 - Tire Pressure. Air pressure at sea level is about...Ch. 14 - Personal Energy Content. The average power of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Make a sketch of the Sun’s atmosphere showing the locations of the photosphere, chromosphere, and corona. What is the approximate temperature of each of these regions?arrow_forwardCompare and contrast the four different types of solar activity above the photosphere.arrow_forwardIf a sunspot has a temperature of 4200 K and the average solar photosphere has a temperature of 5780 K, how much more energy is emitted in 1 second from a square meter of the photosphere compared to a square meter of the sunspot? (Hint: Use the Stefan-Boltzmann law, Eq. 7-1.)arrow_forward
- If a sunspot has a temperature of 4200 K and the average solar photosphere has a temperature of 5800 K, how many times brighter is a square meter of the photosphere compared to a square meter of the sunspot? (Hint: Use the Stefan-Boltzmann law in Reasoning with Numbers 6-1.)arrow_forwardDescribe how energy makes its way from the nuclear core of the Sun to the atmosphere. Include the name of each layer and how energy moves through the layer.arrow_forwardGive the following figure of the sun, label the features observed and describe some of the characteristics.arrow_forward
- Explain in detailarrow_forwardStatus of Sun's core and its temperature (The letters correspond to the stages in Figure 21.1.) 3. Stage A: T10 million K. Sun is in equilibrium. 4. Stage B: T 100 million K Core collapse stops. 5. Stage C: Helium flash 6. Stage D: T 100 million K. Sun is in equilibrium. 7. Stage E: T800 million K. Core collapse stops. If fusion is occurring in core or in shell around the core, mark with a ✔in the correct column. Core fusion H to He FUSION ✓ Core fusion He to C Shell fusion H to He Shell fusion He to C PRESSURE VERSUS GRAVITY CORE • REST OF THE STAR Pressure comes from electron degeneracy Pressure Gravity Gravity Pressure region contracts and heats Pressure > Gravity region expands and coolsarrow_forwardWhy was the detection of solar neutrinos important? a) They have been suggested as an important source of solar energy. b) They provide direct evidence for solar oscillations. c) The provide direct evidence for the proton-proton chain. Where does nuclear energy production (fusion) occur in the Sun? a) In the nuclear zone b) In all layers of the Sun c) In the photosphere d) In the corearrow_forward
- During the Maunder minimum a. solar brightness dropped slightly b. the average surface temperature of the sun dropped c. few sunspots were observedarrow_forwardDescribe the process as a photon (energy) created in the Sun's core makes its way out into space. Make sure to consider the different layers that the photon must pass through to reach the Sun's surface.arrow_forwardFor several hundred years, astronomers have kept track of the number of solar flares, or sunspots which occur on the surface of the sun. The number of sunspots counted varies periodically from a minimum of about 10 per year to a maximum of about 110 per year. Between the maximum that occurred in the years 1750 and 1948, there were 18 completed cycles. A.) What is the period of the sunspot cycle? B.) Assume that the number of sunspots varies sinusoidally with the year. Sketch a graph of two sun spot cycles, starting in 1948. C.) Write an equation expressing the number of sunspots per year in terms of the year. D.) what is the first year after 2000 in which the number of sunspots will be about 35? A maximum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning