Introductory Chemistry: An Active Learning Approach
Introductory Chemistry: An Active Learning Approach
6th Edition
ISBN: 9781305079250
Author: Mark S. Cracolice, Ed Peters
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 14, Problem 48E
Interpretation Introduction

(a)

Interpretation:

Whether the statement “the molar volume of a gas at 1.06atm and 212°C is less than 22.7L/mol” is true or false is to be stated.

Concept introduction:

The ideal gas equation is used to represent the relation between the volume, pressure, temperature and number of moles of an ideal gas. The ideal gas equation is represented as given below.

PV=nRT

Expert Solution
Check Mark

Answer to Problem 48E

The statement “the molar volume of a gas at 1.06atm and 212°C is less than 22.7L/mol” is false.

Explanation of Solution

It is given that pressure and temperature for the gas is 1.06atm and 212°C respectively.

The conversion factor of temperature unit °C into K is done below.

K=°C+273

Substitute the value of temperature in the above equation as shown below.

K=°C+273=212+273=485K

Ideal gas equation is given by the formula as shown below.

PV=nRT…(1)

Where,

P is the pressure.

V is the volume.

T is the temperature.

n is the number of moles.

R is the gas constant.

Rearrange the above equation in terms of molar volume as shown below.

PV=nRTVn=RTP…(2)

Substitute the values of pressure and temperature of gas in the equation (2) to calculate molar volume as shown below.

Vn=RTP=0.0821Latmmol1K1×485K1.06atm=37.56Lmol1

The molar volume of a gas at 1.06atm and 212°C is 37.56Lmol1 which is more than 22.7L/mol.

Therefore, the statement “the molar volume of a gas at 1.06atm and 212°C is less than 22.7L/mol” is false.

Conclusion

The statement “the molar volume of a gas at 1.06atm and 212°C is less than 22.7L/mol” is false.

Interpretation Introduction

(b)

Interpretation:

Whether the statement “the mass of 5.00L of NH3 is the same as the mass of 5.00L of CO if both volumes are measured at the same temperature and pressure” is true or false is to be stated.

Concept introduction:

The ideal gas equation is used to represent the relation between the volume, pressure, temperature and number of moles of an ideal gas. The ideal gas equation is represented as given below.

PV=nRT

Expert Solution
Check Mark

Answer to Problem 48E

The statement “the mass of 5.00L of NH3 is the same as the mass of 5.00L of CO if both volumes are measured at the same temperature and pressure” is false.

Explanation of Solution

Ideal gas equation is given by the formula as shown below.

PV=nRT…(1)

Where,

P is the pressure.

V is the volume.

T is the temperature.

n is the number of moles.

R is the gas constant.

The number of moles is given by the formula as shown below.

n=Givenmass(m)Molarmass(MM)

Substitute the above equation in equation (1) as shown below.

PV=mMMRT…(2)

Rearrange the above equation in terms of mass as shown below.

PV=mMMRTm=PV×MMRT…(3)

From the above equation, it is clear that the mass of a gas is directly proportion to its molar mass. This means the mass of 5.00L of NH3 is not the same as the mass of 5.00L of CO.

Therefore, the statement “the mass of 5.00L of NH3 is the same as the mass of 5.00L of CO if both volumes are measured at the same temperature and pressure” is false.

Conclusion

The statement “the mass of 5.00L of NH3 is the same as the mass of 5.00L of CO if both volumes are measured at the same temperature and pressure” is false.

Interpretation Introduction

(c)

Interpretation:

Whether the statement “at a given temperature and pressure, the densities of two gases are proportional to their molar masses” is true or false is to be stated.

Concept introduction:

The ideal gas equation is used to represent the relation between the volume, pressure, temperature and number of moles of an ideal gas. The ideal gas equation is represented as given below.

PV=nRT

Expert Solution
Check Mark

Answer to Problem 48E

The statement “at a given temperature and pressure, the densities of two gases are proportional to their molar masses” is true.

Explanation of Solution

Ideal gas equation is given by the formula as shown below.

PV=nRT…(1)

Where,

P is the pressure.

V is the volume.

T is the temperature.

n is the number of moles.

R is the gas constant.

The number of moles is given by the formula as shown below.

n=Givenmass(m)Molarmass(MM)

Substitute the above equation in equation (1) as shown below.

PV=mMMRT…(2)

The density is given by the formula as shown below.

D=mV

Rearrange equation (2) in terms of density using the above equation as shown below.

PV=mMMRTP=mV×MMRTMM=D×RTP…(3)

From the above equation, it is clear that the molar mass of a gas is directly proportion to its density.

Therefore, the statement “at a given temperature and pressure, the densities of two gases are proportional to their molar masses” is true.

Conclusion

The statement “at a given temperature and pressure, the densities of two gases are proportional to their molar masses” is true.

Interpretation Introduction

(d)

Interpretation:

Whether the statement “to change liters of a gas to moles, multiply by RT/P” is true or false is to be stated.

Concept introduction:

The ideal gas equation is used to represent the relation between the volume, pressure, temperature and number of moles of an ideal gas. The ideal gas equation is represented as given below.

PV=nRT

Expert Solution
Check Mark

Answer to Problem 48E

The statement “to change liters of a gas to moles, multiply by RT/P” is false.

Explanation of Solution

Ideal gas equation is given by the formula as shown below.

PV=nRT…(1)

Where,

P is the pressure.

V is the volume.

T is the temperature.

n is the number of moles.

R is the gas constant.

Rearrange equation (1) in terms of number of moles as shown below.

PV=nRTn=PVRT…(2)

From the above equation, it is clear that to calculate number of moles from liters of a gas, the volume is multiplied by PRT.

Therefore, the statement “to change liters of a gas to moles, multiply by RT/P” is false.

Conclusion

The statement “to change liters of a gas to moles, multiply by RT/P” is false.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please correct answer and don't used hand raiting
Please correct answer and don't used hand raiting
Pleasssssseeee solve this question in cheeemsirty, thankss sir

Chapter 14 Solutions

Introductory Chemistry: An Active Learning Approach

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY