Concept explainers
(a)
Interpretation:
In the reaction,
Concept introduction:
Ideal gas is defined as the gas in which the collisions between the molecules and the atoms are perfectly elastic and there are no intermolecular attractive forces found between them. The ideal gas equation is given by the expression as shown below
Answer to Problem 41E
The volume of
Explanation of Solution
In the reaction,
The mole ratio of the reactants and products is
The volume of
Therefore, the volume of
Therefore, the volume of
The volume of
(b)
Interpretation:
In the reaction,
Concept introduction:
Ideal gas is defined as the gas in which the collisions between the molecules and the atoms are perfectly elastic and there are no intermolecular attractive forces found between them. The ideal gas equation is given by the expression as shown below
Answer to Problem 41E
The volume of
Explanation of Solution
In the reaction,
Conversion of temperature from Celsius to Kelvin can be done as shown below.
Therefore,
The initial and final temperature of
The relation between the initial and final pressure, volume and temperature of gas is shown below.
Where,
•
•
•
•
•
•
Substitute the values of initial and final temperature, pressure and volume into the equation (1).
Therefore, the final volume of
The volume of
Therefore, the volume of oxygen gas needed is
The volume of
Want to see more full solutions like this?
Chapter 14 Solutions
Introductory Chemistry: An Active Learning Approach
- Potassium peroxide is used to absorb the CO2 produced by the people in a space vehicle. 2K2O2(s)+2CO2(g)2K2CO3(s)+O2(g)If a person at rest exhales 3.0 L of air per minute and CO2 is 3.4% (by volume) of exhaled air, how many grams of K2O2 are needed per person for a five-day trip. Assume a temperature of 250 and 728 mm Hg pressure.arrow_forwardA mixture contained calcium carbonate, CaCO3, and magnesium carbonate, MgCO3. A sample of this mixture weighing 7.85 g was reacted with excess hydrochloric acid. The reactions are CaCO3(g)+2HCL(aq)CaCl2(aq)+H2O(I)+CO2(g)MgCO3(s)+2HCL(aq)MgCl2(aq)+H2O(I)+CO2(g) If the sample reacted completely and produced 1.94 L of carbon dioxide, CO2, at 25C and 785 mmHg, what were the percentages of CaCO3 and MgCO3 in the mixture?arrow_forwardYou have an equimolar mixture of the gases SO2 and O2, along with some He, in a container fitted with a piston. The density of this mixture at STP is 1.924 g/L. Assume ideal behavior and constant temperature and pressure. a. What is the mole fraction of He in the original mixture? b. The SO2 and O2 react to completion to form SO3. What is the density of the gas mixture after the reaction is complete?arrow_forward
- A sample of natural gas is 85.2% methane, CH4, and 14.8% ethane, C2H6, by mass. What is the density of this mixture at 18C and 771 mmHg?arrow_forward5-114 Carbon dioxide gas, saturated with water vapor, can be produced by the addition of aqueous acid to calcium carbonate based on the following balanced net ionic equation: (a) How many moles of wet CO (g), collected at 60.°C and 774 torr total pressure, are produced by the complete reaction of 10.0 g of CaCO3 with excess acid? (b) What volume does this wet CO2 occupy? (c) What volume would the CO2 occupy at 774 torr if a desiccant (a chemical drying agent) were added to remove the water? The vapor pressure of water at 60.°C is 149.4 mm Hg.arrow_forward54 One way to generate oxygen is to heat potassium chlorate, KClO3. (The other product is potassium chloride.) If 386 mL of oxygen at 41 C and 97.8 kPa is generated by this reaction, what is the minimum mass of KClO3used?arrow_forward
- Liquid oxygen was first prepared by heating potassium chlorate, KClO3, in a closed vessel to obtain oxygen at high pressure. The oxygen was cooled until it liquefied. 2KClO3(s)2KCl(s)+3O2(g) If 171 g of potassium chlorate reacts in a 2.70-L vessel, which was initially evacuated, what pressure of oxygen will be attained when the temperature is finally cooled to 25C? Use the preceding chemical equation and ignore the volume of solid product.arrow_forwardHydrogen gas is used in weather balloon because it is less expensive than Helium. Assume that 5.57 g of H2 is used to fill a weather balloon to an initial volume of 67 L at 1.04 atm. If the ballloon rises to an altitude where the pressure is 0.047 atm, what is its new volume? Assume that the temperature remains constant.arrow_forwardA mixture at 33 °C contains H2at 325 torr. N;at 475 tore and O2at 650. torr. What is the total pressure of the gases in the system? Which gas contains the greatest number of moles?arrow_forward
- 50 The first step in processing zinc metal from its ore, ZnS, is to react it with O2 according to the reaction 2ZnS(s)+3O2(g)2ZnO(s)+2SO2(g) If 620 kg of ZnS is to be reacted, what volume of oxygen at 0.977 atm 34.0 C is needed (at a minimum) to carry out this reaction?arrow_forwardA chemist weighed out 5.14 g of a mixture containing unknown amounts of BaO(s) and CaO(s) and placed the sample in a 1.50-L flask containing CO2(g) at 30.0C and 750. torr. After the reaction to form BaCO3(s) and CaCO3(s) was completed, the pressure of CO2(g) remaining was 230. torr. Calculate the mass percentages of CaO(s) and BaO(s) in the mixture.arrow_forwardA mixture contained zinc sulfide, ZnS, and lead sulfide, PbS. A sample of the mixture weighing 6.12 g was reacted with an excess of hydrochloric acid. The reactions are ZnS(s)+2HCL(aq)ZnCl2(aq)+H2S(g)PbS(s)+2HCL(aq)PbCl2(aq)+H2S(g) If the sample reacted completely and produced 1.049 L of hydrogen sulfide, H2S, at 23C and 762 mmHg, what were the percentages of ZnS and PbS in the mixture?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning