21st Century Astronomy
6th Edition
ISBN: 9780393428063
Author: Kay
Publisher: NORTON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 38QP
To determine
The time taken by the A5 star to fuse hydrogen to helium. What would that mean for Earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a
4
sphere is Tr.)
3
km
Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size?
I Table A-10 I Properties of the Planets
ORBITAL PROPERTIES
Semimajor Axis (a)
Orbital Period (P)
Average Orbital
Velocity (km/s)
Orbital
Inclination
Planet
(AU)
(106 km)
(v)
(days)
Eccentricity
to Ecliptic
Mercury
0.387
57.9
0.241
88.0
47.9
0.206
7.0°
Venus
0.723
108
0.615
224.7
35.0
0.007
3.4°
Earth
1.00
150
1.00
365.3
29.8
0.017
Mars
1.52
228
1.88
687.0
24.1
0.093
1.8°
Jupiter
5.20
779
11.9
4332
13.1
0.049
1.30
Saturn
9.58
1433
29.5
10,759
9.7
0.056
2.5°
30,799
60,190
Uranus
19.23
2877
84.3
6.8
0.044
0.8°
Neptune
* By definition.
30.10
4503
164.8
5.4
0.011
1.8°
PHYSICAL PROPERTIES (Earth = e)…
A star's Zero Age Main Sequence (ZAMS) radius R, luminosity L, and effective temperature
Teff depend primarily on the star's mass. These parameters do evolve somewhat over
time, however, while the star still remains on the main sequence. Discuss in what direction
each of these parameters evolves, and explain why this occurs. By physical in your
explanation. How did this evolution affect our own solar system, if at all?
Assuming that at the end of the He burning phase of the stellar core (r < R_core) has no H or He or other metals and is composed completely of Carbon, X=Y=0, X_c = 1 ; The envelope above the core has a normal stellar composition ( r > R_core). Calculate the length of time in years that a 1M_sol and 10M_sol star will live on the horizontal branch or the time between the start and end of the He burning phase. Assume that the normal relationship between mass and luminosity holds for horizontal branch stars. Please be as detailed as possible
Chapter 14 Solutions
21st Century Astronomy
Ch. 14.1 - Prob. 14.1ACYUCh. 14.1 - Prob. 14.1BCYUCh. 14.2 - Prob. 14.2CYUCh. 14.3 - Prob. 14.3CYUCh. 14.4 - Prob. 14.4CYUCh. 14 - Prob. 1QPCh. 14 - Prob. 2QPCh. 14 - Prob. 3QPCh. 14 - Prob. 4QPCh. 14 - Prob. 5QP
Ch. 14 - Prob. 6QPCh. 14 - Prob. 7QPCh. 14 - Prob. 8QPCh. 14 - Prob. 9QPCh. 14 - Prob. 10QPCh. 14 - Prob. 11QPCh. 14 - Prob. 12QPCh. 14 - Prob. 13QPCh. 14 - Prob. 14QPCh. 14 - Prob. 15QPCh. 14 - Prob. 16QPCh. 14 - Prob. 17QPCh. 14 - Prob. 18QPCh. 14 - Prob. 19QPCh. 14 - Prob. 20QPCh. 14 - Prob. 21QPCh. 14 - Prob. 22QPCh. 14 - Prob. 23QPCh. 14 - Prob. 24QPCh. 14 - Prob. 25QPCh. 14 - Prob. 26QPCh. 14 - Prob. 27QPCh. 14 - Prob. 28QPCh. 14 - Prob. 29QPCh. 14 - Prob. 30QPCh. 14 - Prob. 31QPCh. 14 - Prob. 34QPCh. 14 - Prob. 35QPCh. 14 - Prob. 36QPCh. 14 - Prob. 37QPCh. 14 - Prob. 38QPCh. 14 - Prob. 39QPCh. 14 - Prob. 40QPCh. 14 - Prob. 41QPCh. 14 - Prob. 42QPCh. 14 - Prob. 43QPCh. 14 - Prob. 44QPCh. 14 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Let’s say you’re looking for extrasolar planets. You observe a star that has a spectral shift in the line that is supposed to be at at 656.28011 nm – this star shows this line at 656.28005 nm. What is the radial velocity of star (in m/s) and in what direction in relation to you? a) 27.4 m/s, towards b) 27.4 km/s, away c) -27.4 m/s, toward d) -27.4 km/s, awayarrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer) Question 4 of 7 A Moving to another question will save this response. 1 6:59 & backsarrow_forwardLet us imagine that the spectrum of a star is collected and we find the absorption line of Hydrogen-Alpha (the deepest absorption line of hydrogen in the visible part of the electromagnetic spectrum) to be observed at 656.5 nm instead of 656.3 nm as measured in a lab here on Earth. What is the velocity of this star in m/s? (Hint: speed of light is 3*10^8 m/s; leave the units off of your answer)arrow_forward
- (Astronomy) Binary Pulsar. Part A: Use the orbital period 27 min for the binary pulsar (two neutron stars orbit each other) to find the orbital separation of the pair in AU and solar radii. Assume a neutron star's mass is 3 solar masses. (Hints: Use the version of Kepler's third law for binary stars.) Part B: Is this system orbiting closer or further than Mercury is to the Sun?arrow_forwardThere are 200000 AU radius clouds will form a star of 10 solar masses and the 150000 AU radius clouds will form a star of 1 solar mass. How fast will the 10 Solar mass stars form? Show how you determine this time.arrow_forwardPlace the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O Oarrow_forward
- What is fusion? How does it happen inside a star?arrow_forwardA planet orbits 1 AU from a star that is 2 times as massive as our Sun. How does the star's luminosity compare? LSun If the star has the same radius as our Sun, what is the temperature of the star compared to the Sun? т. Tsun If Earth's average temperature is 287 K and the Sun were replaced with this star, how would its average temperature change? (Enter a temperature in K. Assume that Earth temperature is proportional to solar flux.) K Need Help? Read Itarrow_forwardIf the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength (in nm) does it radiate the most energy? Hint: Use Wien's law: ?max = 2.90 ✕ 106 nm · K T How does that compare with 91.2 nm, the wavelength of photons with just enough energy to ionize hydrogen? -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will have more than enough energy to ionize hydrogen. -The wavelength calculated above is shorter than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen. -The wavelength calculated above is longer than 91.2 nm. Photons at this calculated wavelength will not have enough energy to ionize hydrogen.arrow_forward
- A star with spectral type A0 has a surface temperature of 9600 K and a radius of 2.2 RSun. How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) This star has a mass of 3.3 MSun. Using the simple approximation that we made in class, what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Compare this to the lifetime of a A0 star listed in Table 22.1 (computed using a more sophisticated approach). Is the value you calculated in the previous problem longer or shorter than what is reported in the table? (L for longer, S for shorter) (You only get one try at this problem.)arrow_forwardA 46M Sun main sequence star loses 1 Msun of mass over 105 years. (Due to the nature of this problem, do not use rounded intermediate values in your calculations including answers submitted in WebAssign.) How many solar masses did it lose in a year? By how much will its luminosity decrease if this mass loss continues over 0.8 million years? Due to the nature of this problem, for all parts, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign. To determine the number of solar masses lost per year, divide the mass lost by the number of years over which it was lost. Mlost tlost-yr Part 1 of 3 dM = dM = MSun/yrarrow_forwardQUESTION 16 Use the figure shown below to complete the following statement: A low-mass protostar (0.5 to 8M the mass compared to our sun) remains roughly constant in decreases in until it makes a turn towards the main sequence, as it follows its evolutionary track. Protostars of different masses follow diferent paths on their way to the main sequence. 107 Luminosity (L) 10 105 10 107 10² 101 1 10-1 10-2 10-3 Spectral type 0.01 R 0.001 Re 60 M MAIN SEQUENCE 40,000 30,000 20 Mau 10 Mgun 5 Mun 0.1 Run Ren radius; temperature luminosity; radius 3 Min. 05 BO temperature; luminosity Oluminosity: temperature radius: luminosity 1 M 10,000 6000 Surlace temperature (K) 1,000 Rs 2 M STAR L 0.8 M B5 AO FOGO КБ МБ -10 +10 3000 Absolute visual magnitude andarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning