21st Century Astronomy
6th Edition
ISBN: 9780393428063
Author: Kay
Publisher: NORTON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 14, Problem 34QP
To determine
The gamma ray produced in the sun’s core takes more time to emerge.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The capture of too few solar neutrinos by Davis in the solar neutrino experiment
a.
can be explained if the sun is not undergoing thermonuclear fusion of hydrogen in its core.
b.
indicates that the sun’s core is much cooler than expected.
c.
indicates that the sun’s core is much hotter than expected.
d.
indicates that the sun’s core is convective.
e.
is explained by none of the above.
1 Solar constant, Sun, and the 10 pc distance!
The luminosity of Sun is + 4- 1026 W - 4- 1033ergs-1, The Sun is located at a distance of
m from the Earth. The Earth receives a radiant flux (above its atmosphere) of F = 1365W m- 2, also known as
the solar constant. What would have been the Solar contact if the Sun was at a distance of 10 pc ?
1AU 1 1.5-+ 1011
Can you solve the problem, according to the information provided?
Chapter 14 Solutions
21st Century Astronomy
Ch. 14.1 - Prob. 14.1ACYUCh. 14.1 - Prob. 14.1BCYUCh. 14.2 - Prob. 14.2CYUCh. 14.3 - Prob. 14.3CYUCh. 14.4 - Prob. 14.4CYUCh. 14 - Prob. 1QPCh. 14 - Prob. 2QPCh. 14 - Prob. 3QPCh. 14 - Prob. 4QPCh. 14 - Prob. 5QP
Ch. 14 - Prob. 6QPCh. 14 - Prob. 7QPCh. 14 - Prob. 8QPCh. 14 - Prob. 9QPCh. 14 - Prob. 10QPCh. 14 - Prob. 11QPCh. 14 - Prob. 12QPCh. 14 - Prob. 13QPCh. 14 - Prob. 14QPCh. 14 - Prob. 15QPCh. 14 - Prob. 16QPCh. 14 - Prob. 17QPCh. 14 - Prob. 18QPCh. 14 - Prob. 19QPCh. 14 - Prob. 20QPCh. 14 - Prob. 21QPCh. 14 - Prob. 22QPCh. 14 - Prob. 23QPCh. 14 - Prob. 24QPCh. 14 - Prob. 25QPCh. 14 - Prob. 26QPCh. 14 - Prob. 27QPCh. 14 - Prob. 28QPCh. 14 - Prob. 29QPCh. 14 - Prob. 30QPCh. 14 - Prob. 31QPCh. 14 - Prob. 34QPCh. 14 - Prob. 35QPCh. 14 - Prob. 36QPCh. 14 - Prob. 37QPCh. 14 - Prob. 38QPCh. 14 - Prob. 39QPCh. 14 - Prob. 40QPCh. 14 - Prob. 41QPCh. 14 - Prob. 42QPCh. 14 - Prob. 43QPCh. 14 - Prob. 44QPCh. 14 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Table 15.1 indicates that the density of the Sun is 1.41 g/cm3. Since other materials, such as ice, have similar densities, how do you know that the Sun is not made of ice?arrow_forwardIf the radius of the sun is 7.001×105 km, what is the average density of the sun in units of grams per cubic centimeter? The volume of a sphere is (4/3)π r3. The sun is a sphere with an estimated mass of 2.00×1030 kg. What exactly is the conversion process for this?arrow_forwarda) At solar maximum sunspots might cover up to 0.4% of the total area of the Sun. If the sunspots have a temperature of 3800 K and the surrounding photosphere has a temperature of 6000 K, calculate the fractional change (as a percentage) in the luminosity due to the presence of the sunspots. b) A star of the same stellar class as the Sun is observed regularly over many years, and a time series of its bolometric apparent magnitude is collected. What would be the signal in this time series which indicated that the star had a magnetic dynamo similar to the Sun? Briefly describe two or three possible sources of other signals which could confuse the interpretation of the data.arrow_forward
- Explain why there is the low number of observed solar neutrinos?arrow_forwardIn a typical solar oscillation, the Sun’s surface moves up or down with a speed of 0.1m/s . If you were to try to measure this speed using the Doppler shift of the absorption line for Iron which has a wavelength of 557.6099nm, what is the longest wavelength you will see?arrow_forwardUse Wein's law to determine the wavelength corresponding to the peak of the black body curve (a) in the core of the Sun, where the temperature is 10^7, (b) in the solar convection zone (10^5), and (c) just below the solar photosphere (10^4K). What form (visible, infrared, X-ray, etc.) does radiation take in each case?arrow_forward
- From the information in Figure 15.21, estimate the speed with which the particles in the CME in parts (c) and (d) are moving away from the Sun. Figure 15.21 Flare and Coronal Mass Ejection. This sequence of four images shows the evolution over time of a giant eruption on the Sun. (a) The event began at the location of a sunspot group, and (b) a flare is seen in far-ultraviolet light. (c) Fourteen hours later, a CME is seen blasting out into space. (d) Three hours later, this CME has expanded to form a giant cloud of particles escaping from the Sun and is beginning the journey out into the solar system. The white circle in (c) and (d) shows the diameter of the solar photosphere. The larger dark area shows where light from the Sun has been blocked out by a specially designed instrument to make it possible to see the faint emission from the corona. (credit a, b, c, d: modification of work by SOHO/EIT, SOHO/LASCO, SOHO/MDI (ESA & NASA))arrow_forwardWhy is fission not an important energy source in the Sun?arrow_forwardNeutrinos produced in the core of the Sun carry energy to its exterior. Is the mechanism for this energy transport conduction, convection, or radiation?arrow_forward
- What is the average density of the Sun? How does it compare to the average density of Earth?arrow_forwardShow that the statement that 92% of the Sun’s atoms are hydrogen is consistent with the statement that 73% of the Sun’s mass is made up of hydrogen, as found in Table 15.2. (Hint: Make the simplifying assumption, which is nearly correct, that the Sun is made up entirely of hydrogen and helium.)arrow_forwardWhich aspects of the Sun’s activity cycle have a period of about 11 years? Which vary during intervals of about 22 years?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning