Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 35P
Two adjacent natural frequencies of an organ pipe are determined to be 550 Hz and 650 Hz. Calculate (a) the fundamental frequency and (b) the length of this pipe.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two adjacent natural frequencies of an organ pipe are found to be 616 Hz and 792 Hz.
(a) Calculate the fundamental frequency.
(b) What is the length of the pipe?
An open organ pipe has a length of 0.75m. What would be the length of a closed organ pipe whose third harmonic is the same as the fundamental frequency of the open pipe?
Two adjacent natural frequencies of an organ pipe are determined to be 986 Hz and 1102 Hz. (Assume the speed of sound is 343 m/s.)
(a) Calculate the fundamental frequency of this pipe.
Hz
(b) Calculate the length of this pipe.
Chapter 14 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 14.1 - Prob. 14.1QQCh. 14.2 - Prob. 14.2QQCh. 14.3 - When a standing wave is set up on a string fixed...Ch. 14.4 - Prob. 14.4QQCh. 14.4 - Prob. 14.5QQCh. 14.5 - You are tuning a guitar by comparing the sound of...Ch. 14 - A flute has a length of 58.0 cm. If the speed of...Ch. 14 - Prob. 2OQCh. 14 - In Figure OQ14.3, a sound wave of wavelength 0.8 m...Ch. 14 - Prob. 4OQ
Ch. 14 - Prob. 5OQCh. 14 - Prob. 6OQCh. 14 - Prob. 7OQCh. 14 - Prob. 8OQCh. 14 - Prob. 9OQCh. 14 - Prob. 10OQCh. 14 - A standing wave having three nodes is set up in a...Ch. 14 - Prob. 1CQCh. 14 - Prob. 2CQCh. 14 - Prob. 3CQCh. 14 - Prob. 4CQCh. 14 - What limits the amplitude of motion of a real...Ch. 14 - Prob. 6CQCh. 14 - Prob. 7CQCh. 14 - Prob. 8CQCh. 14 - Prob. 1PCh. 14 - Prob. 2PCh. 14 - Prob. 3PCh. 14 - Prob. 4PCh. 14 - Prob. 5PCh. 14 - Prob. 6PCh. 14 - Prob. 7PCh. 14 - Prob. 8PCh. 14 - Prob. 9PCh. 14 - Prob. 10PCh. 14 - Prob. 11PCh. 14 - Prob. 12PCh. 14 - Prob. 13PCh. 14 - Prob. 14PCh. 14 - Prob. 15PCh. 14 - Prob. 16PCh. 14 - Prob. 17PCh. 14 - Prob. 18PCh. 14 - Prob. 19PCh. 14 - Prob. 20PCh. 14 - A string with a mass m = 8.00 g and a length L =...Ch. 14 - Prob. 22PCh. 14 - Prob. 23PCh. 14 - Prob. 24PCh. 14 - Prob. 25PCh. 14 - Review. A sphere of mass M is supported by a...Ch. 14 - Prob. 27PCh. 14 - Prob. 28PCh. 14 - Prob. 29PCh. 14 - Prob. 30PCh. 14 - Prob. 31PCh. 14 - The overall length of a piccolo is 32.0 cm. The...Ch. 14 - Prob. 33PCh. 14 - Prob. 34PCh. 14 - Two adjacent natural frequencies of an organ pipe...Ch. 14 - Do not stick anything into your ear! Estimate the...Ch. 14 - Prob. 37PCh. 14 - As shown in Figure P14.37, water is pumped into a...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - Prob. 41PCh. 14 - Why is the following situation impossible? A...Ch. 14 - 23. An air column in a glass tube is open at one...Ch. 14 - Prob. 44PCh. 14 - Prob. 45PCh. 14 - Prob. 46PCh. 14 - Prob. 47PCh. 14 - Prob. 48PCh. 14 - Some studies suggest that the upper frequency...Ch. 14 - Prob. 50PCh. 14 - An earthquake can produce a seiche in a lake in...Ch. 14 - Prob. 52PCh. 14 - Prob. 53PCh. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - A nylon string has mass 5.50 g and length L = 86.0...Ch. 14 - Prob. 57PCh. 14 - Prob. 58PCh. 14 - Prob. 59PCh. 14 - Review. For the arrangement shown in Figure...Ch. 14 - Prob. 61PCh. 14 - Prob. 62PCh. 14 - Prob. 63PCh. 14 - Prob. 64PCh. 14 - Prob. 65PCh. 14 - Prob. 66PCh. 14 - Prob. 67PCh. 14 - Review. Consider the apparatus shown in Figure...Ch. 14 - Prob. 69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardThe fundamental frequency of an open organ pipe corresponds to middle C (261.6 Hz on the chromatic musical scale). The third resonance of a closed organ pipe has the same frequency. What is the length of (a) the open pipe and (b) the closed pipe?arrow_forwardA pipe open at both ends has a fundamental frequency of 3.00 x 102 Hz when the temperature is 0°C. (a) What is the length of the pipe? (b) What is the fundamental frequency at a temperature of 30.0°C?arrow_forward
- A third harmonic frequency is being played on a pipe organ, Considered the pipe organ to be closed air column. If the speed inside the pipe is 343 metres per second and the frequency is 243 hertz, calculate the length of the pipe.arrow_forwardThe fundamental frequency of a pipe that is open at both ends is 600 Hz . (a) How long is this pipe? Use v = 350 m/s. (b) If one end is now closed, find the wavelength and frequency of the new fundamental.arrow_forwardThe A string on a violin has a fundamental frequency of 430Hz. The length of the vibrating portion of the string is 35cm and has a mass of 0.35 g. Under what tension must the string be placed to obtain the desired frequency?arrow_forward
- What would be the length (in cm) of a closed - end organ pipe has a 7th harmonic resonance frequency of 1320 Hz? Assume a speed of sound in air of 344 m/s.arrow_forwardAn organ pipe (closed at one end) produces a mixture of 1100 Hz and 1833 Hz. These frequencies correspond to the first and second overtones respectively. What is the frequency of the first harmonic?arrow_forwardAn organ pipe that is open both ends has a fundamental frequency of 382 Hz at 0 ° C. Calculate the fundamental frequency for this pipe at 35 ° C.arrow_forward
- One OPEN organ pipe has a length of 2.40 m. What is the frequency of a note played by this pipe? What is the frequency of the second and third harmonic?arrow_forwardThe lowest frequency in the audible range is 20 Hz. What are the lengths of (a) the shortest open-open tube and (b) the shortest open-closed tube needed to produce this frequency?arrow_forwardAn organ pipe produces two successive harmonics at 750 Hz and 1050 Hz. (a) What is the fundamental frequency of the pipe if the speed of sound is 340 m/s? (b) Is this an open or closed pipe? (c) What is the length of the pipe?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY