
A Survey of Mathematics with Applications (10th Edition) - Standalone book
10th Edition
ISBN: 9780134112107
Author: Allen R. Angel, Christine D. Abbott, Dennis Runde
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 14, Problem 30RE
To determine
The apportionment of each region’s using Adams’ method.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Construct tables showing the values of alI the Dirichlet characters mod k fork = 8,9, and 10.
(please show me result in a table and the equation in mathematical format.)
Example: For what odd primes p is 11 a quadratic residue modulo p?
Solution:
This is really asking "when is (11 | p) =1?"
First, 11 = 3 (mod 4). To use LQR, consider two cases p = 1 or 3 (mod 4):
p=1 We have 1 = (11 | p) = (p | 11), so p is a quadratic residue modulo 11. By
brute force:
121, 224, 3² = 9, 4² = 5, 5² = 3 (mod 11)
so the quadratic residues mod 11 are 1,3,4,5,9.
Using CRT for p = 1 (mod 4) & p = 1,3,4,5,9 (mod 11).
p = 1
(mod 4)
&
p = 1
(mod 11
gives p
1
(mod 44).
p = 1
(mod 4)
&
p = 3
(mod 11)
gives p25
(mod 44).
p = 1
(mod 4)
&
p = 4
(mod 11)
gives p=37
(mod 44).
p = 1
(mod 4)
&
p = 5
(mod 11)
gives p
5
(mod 44).
p = 1
(mod 4)
&
p=9
(mod 11)
gives p
9
(mod 44).
So p =1,5,9,25,37 (mod 44).
Chapter 14 Solutions
A Survey of Mathematics with Applications (10th Edition) - Standalone book
Ch. 14.1 - In Exercise 1-8, fill in the blank with an...Ch. 14.1 - In Exercise 1-8, fill in the blank with an...Ch. 14.1 - In Exercise 1-8, fill in the blank with an...Ch. 14.1 - In Exercise 1-8, fill in the blank with an...Ch. 14.1 - Prob. 5ECh. 14.1 - In Exercise 1-8, fill in the blank with an...Ch. 14.1 - Prob. 7ECh. 14.1 - Prob. 8ECh. 14.1 - Plurality Three candidates are running for mayor...Ch. 14.1 - Prob. 10E
Ch. 14.1 - Preference Table for Potato Chips Nine voters are...Ch. 14.1 - Prob. 12ECh. 14.1 - Logo choice in Exercises 1318, employees of...Ch. 14.1 - Prob. 14ECh. 14.1 - Logo choice in Exercises 1318, employees of...Ch. 14.1 - Logo choice in Exercises 1318, employees of...Ch. 14.1 - Logo choice in Exercises 1318, employees of...Ch. 14.1 - Logo choice in Exercises 1318, employees of...Ch. 14.1 - Prob. 19ECh. 14.1 - Prob. 20ECh. 14.1 - Prob. 21ECh. 14.1 - Prob. 22ECh. 14.1 - NFL Expansion In Exercises 2326, the National...Ch. 14.1 - NFL Expansion In Exercises 2326, the National...Ch. 14.1 - NFL Expansion In Exercises 2326, the National...Ch. 14.1 - NFL Expansion In Exercises 2326, the National...Ch. 14.1 - Board of Trustees Election. In Excercises 27-31,...Ch. 14.1 - Board of Trustees Election. In Excercises 27-31,...Ch. 14.1 - Board of Trustees Election. In Excercises 27-31,...Ch. 14.1 - Board of Trustees Election. In Excercises 27-31,...Ch. 14.1 - Prob. 31ECh. 14.1 - Post Office Sites In Exercises 32-36, the 11...Ch. 14.1 - Post Office Sites In Exercises 32-36, the 11...Ch. 14.1 - Prob. 34ECh. 14.1 - Prob. 35ECh. 14.1 - Prob. 36ECh. 14.1 - Choosing a Contractor The board of directors of...Ch. 14.1 - Prob. 38ECh. 14.1 - Flowers in a Garden The flowers in a garden at a...Ch. 14.1 - Choosing a Computer The Wizards Computer Club is...Ch. 14.1 - Prob. 41ECh. 14.1 - Describe one way other than flipping a coin to...Ch. 14.1 - Prob. 43ECh. 14.1 - Prob. 44ECh. 14.1 - Prob. 45ECh. 14.1 - Prob. 46ECh. 14.1 - Prob. 47ECh. 14.1 - Prob. 48ECh. 14.1 - Constuct a preference table showing 12 votes for 3...Ch. 14.2 - In Exercises 1 8, fill in the blank with an...Ch. 14.2 - In Exercises 1 8, fill in the blank with an...Ch. 14.2 - In Exercises 1 8, fill in the blank with an...Ch. 14.2 - In Exercises 1 8, fill in the blank with an...Ch. 14.2 - In Exercises 1 8, fill in the blank with an...Ch. 14.2 - Prob. 6ECh. 14.2 - Prob. 7ECh. 14.2 - Prob. 8ECh. 14.2 - Annual Meeting Members of the board of directors...Ch. 14.2 - Prob. 10ECh. 14.2 - Restructuring a Company The board of directors at...Ch. 14.2 - Party Theme The children in Ms Cohns seventh-grade...Ch. 14.2 - Residence Hall Improvements The administration at...Ch. 14.2 - Prob. 14ECh. 14.2 - Preference for Grape Jelly Twenty-one people are...Ch. 14.2 - A Taste Test Twenty-five people are surveyed in...Ch. 14.2 - Plurality: Irrelevant Alternatives Criterion...Ch. 14.2 - Prob. 18ECh. 14.2 - Borda Count: Irrelevant Alternatives Criterion...Ch. 14.2 - Borda Count: Irrelevant Alternatives Criterion...Ch. 14.2 - Plurality with Elimination Monotonicity Criterion...Ch. 14.2 - Plurality with Elimination: Monotonicity Criterion...Ch. 14.2 - Pair Comparision Method: Monotonicity Criterion...Ch. 14.2 - Prob. 24ECh. 14.2 - Pairwise Comparison: Irrelevant Alternatives...Ch. 14.2 - Prob. 26ECh. 14.2 - Borda Count:Majority Criterion Suppose that the...Ch. 14.2 - Borda Count: Majority Criterion Suppose that the...Ch. 14.2 - Spring Trip The History Club of St. Louis is...Ch. 14.2 - Prob. 30ECh. 14.2 - Selecting a Spokesperson The campbell Soup Comapny...Ch. 14.2 - Prob. 32ECh. 14.2 - Prob. 33ECh. 14.2 - Prob. 34ECh. 14.2 - Construct a prefernce table with three candidates...Ch. 14.2 - Construct a preference table with three candidates...Ch. 14.2 - Construct a preference table with four candidates...Ch. 14.2 - Prob. 38ECh. 14.3 - The total population under consideration divided...Ch. 14.3 - When each group's population is divided by the...Ch. 14.3 - A standard quota rounded up to the nearest integer...Ch. 14.3 - A standard quota rounded down to the nearest...Ch. 14.3 - The rule stating that an apportionment should...Ch. 14.3 - Jefferson's method, Websters method, and Adams'...Ch. 14.3 - In Exercises 1-10, fill in the blank with an...Ch. 14.3 - a. The apportionment method that uses a modified...Ch. 14.3 - a. The apportionment method that uses a modified...Ch. 14.3 - Jeffersons method, Webster's method, and Adams'...Ch. 14.3 - In Exercises 11-49, when appropriate round quotas...Ch. 14.3 - Determine each state's apportionment using...Ch. 14.3 - a. Determine each states modified quota using the...Ch. 14.3 - Prob. 14ECh. 14.3 - Legislative Seats In Exercises 11-18, suppose that...Ch. 14.3 - Legislative Seats In Exercises 11-18, suppose that...Ch. 14.3 - Prob. 17ECh. 14.3 - Prob. 18ECh. 14.3 - Hotel staff In Exercises 19-26, a large hotel...Ch. 14.3 - Prob. 20ECh. 14.3 - Hotel staff In Exercises 19-26, a large hotel...Ch. 14.3 - Prob. 22ECh. 14.3 - Hotel staff In Exercises 19-26, a large hotel...Ch. 14.3 - Prob. 24ECh. 14.3 - Hotel staff In Exercises 19-26, a large hotel...Ch. 14.3 - Prob. 26ECh. 14.3 - Prob. 27ECh. 14.3 - Umbrellas In Exercises 27-30, Sandy Shores Resorts...Ch. 14.3 - Prob. 29ECh. 14.3 - Prob. 30ECh. 14.3 - Now Computers In Exercise 31-34, a university is...Ch. 14.3 - Now Computers In Exercise 31-34, a university is...Ch. 14.3 - Now Computers In Exercise 31-34, a university is...Ch. 14.3 - Now Computers In Exercise 31-34, a university is...Ch. 14.3 - Now Boats In Exercises 35-38, a boat manufacturer...Ch. 14.3 - Now Boats In Exercises 35-38, a boat manufacturer...Ch. 14.3 - Prob. 37ECh. 14.3 - Prob. 38ECh. 14.3 - New Buses In Exercises 39-42, the Transit...Ch. 14.3 - Prob. 40ECh. 14.3 - Prob. 41ECh. 14.3 - Prob. 42ECh. 14.3 - Nursing Shifts In Exercises 43-46, a hospital has...Ch. 14.3 - Prob. 44ECh. 14.3 - Nursing Shifts In Exercises 43-46, a hospital has...Ch. 14.3 - Prob. 46ECh. 14.3 - The First Census In 1970, the first United States...Ch. 14.3 - Legislative Seats Suppose that a country with a...Ch. 14.3 - Prob. 49ECh. 14.4 - In Exercises 1- 6, fill in the blank with an...Ch. 14.4 - When the addition of a new group and additional...Ch. 14.4 - When an increase in the total number of items to...Ch. 14.4 - Hamiltons and Jeffersons apportionment methods,...Ch. 14.4 - Adams and Websters apportionment methods favor...Ch. 14.4 - The apportionment method that satisfies the quota...Ch. 14.4 - In Exercises 7-18, when appropriate, round quotas...Ch. 14.4 - Prob. 8ECh. 14.4 - Legislative Seats A country with three states has...Ch. 14.4 - Prob. 10ECh. 14.4 - Apportioning Promotions ATT has 25,000 employees...Ch. 14.4 - Apportioning Trucks Anabru Manufacturing has 100...Ch. 14.4 - College Internships A college with five divisions...Ch. 14.4 - Prob. 14ECh. 14.4 - Additional Employees Cynergy Telecommunications...Ch. 14.4 - Adding a Park The town of Manlius purchased 25 new...Ch. 14.4 - Adding a State A country with two states has 33...Ch. 14.4 - Adding a State A country with two states has 66...Ch. 14 - Electing the Club President The Sailing Club of...Ch. 14 - Prob. 2RECh. 14 - Prob. 3RECh. 14 - Prob. 4RECh. 14 - Prob. 5RECh. 14 - Prob. 6RECh. 14 - Prob. 7RECh. 14 - Prob. 8RECh. 14 - In Exercises 5-10, the members of the Student...Ch. 14 - Prob. 10RECh. 14 - Prob. 11RECh. 14 - Sports Preferences In Exercises 11-16, the...Ch. 14 - Sports Preferences In Exercises 11-16, the...Ch. 14 - Sports Preferences In Exercises 11-16, the...Ch. 14 - Sports Preferences In Exercises 11-16, the...Ch. 14 - Sports Preferences In Exercises 11-16, the...Ch. 14 - Choosing a License Plate Style Park Forest...Ch. 14 - Accountants Convention The National Association of...Ch. 14 - Prob. 19RECh. 14 - Hiring a New Paralegal In Exercises 20 and 21, a...Ch. 14 - Prob. 21RECh. 14 - Plurality with Elimination Consider the following...Ch. 14 - A Taste Test In a taste test, 114 people are asked...Ch. 14 - Selecting a Band The Southwestern High School...Ch. 14 - Prob. 25RECh. 14 - Prob. 26RECh. 14 - Violating the Irrelevant Alternatives Criterion...Ch. 14 - Prob. 28RECh. 14 - Prob. 29RECh. 14 - Prob. 30RECh. 14 - Prob. 31RECh. 14 - Prob. 32RECh. 14 - Prob. 33RECh. 14 - Prob. 34RECh. 14 - Prob. 35RECh. 14 - Prob. 36RECh. 14 - Prob. 37RECh. 14 - Prob. 38RECh. 14 - Prob. 39RECh. 14 - Prob. 40RECh. 14 - Prob. 41RECh. 14 - Prob. 42RECh. 14 - Prob. 1TCh. 14 - Prob. 2TCh. 14 - Prob. 3TCh. 14 - Prob. 4TCh. 14 - Prob. 5TCh. 14 - Prob. 6TCh. 14 - Prob. 7TCh. 14 - Prob. 8TCh. 14 - Prob. 9TCh. 14 - Prob. 10TCh. 14 - Prob. 11TCh. 14 - Prob. 12TCh. 14 - Prob. 13TCh. 14 - Prob. 14TCh. 14 - Prob. 15TCh. 14 - Prob. 16TCh. 14 - Prob. 17TCh. 14 - Prob. 18TCh. 14 - Prob. 19TCh. 14 - Suppose that a fourth state with the population...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)arrow_forwardJamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the nearest dollar.arrow_forwardr nt Use the compound interest formula, A (t) = P(1 + 1)". An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi- annually. Round all answers to the nearest dollar. a. What will the account be worth in 10 years? $ b. What if the interest were compounding monthly? $ c. What if the interest were compounded daily (assume 365 days in a year)? $arrow_forward
- Kyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) %arrow_forwardTest the claim that a student's pulse rate is different when taking a quiz than attending a regular class. The mean pulse rate difference is 2.7 with 10 students. Use a significance level of 0.005. Pulse rate difference(Quiz - Lecture) 2 -1 5 -8 1 20 15 -4 9 -12arrow_forwardThere are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forward
- The following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. D. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? I leave the answers to A and B to resolve the remaining two. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8 A. Measures of Central Tendency We are to calculate: Mean, Median, Mode The data (already ordered) is: 0.8, 1.4, 1.8, 1.9, 3.2, 3.6, 4.5, 4.5, 4.6, 6.2, 6.5, 7.7, 7.9, 9.9, 10.2, 10.3, 10.9, 11.1, 11.1, 11.6, 11.8, 12.0, 13.1, 13.5, 13.7, 14.1, 14.2, 14.7, 15.0, 15.1, 15.5,…arrow_forwardA tournament is a complete directed graph, for each pair of vertices x, y either (x, y) is an arc or (y, x) is an arc. One can think of this as a round robin tournament, where the vertices represent teams, each pair plays exactly once, with the direction of the arc indicating which team wins. (a) Prove that every tournament has a direct Hamiltonian path. That is a labeling of the teams V1, V2,..., Un so that vi beats Vi+1. That is a labeling so that team 1 beats team 2, team 2 beats team 3, etc. (b) A digraph is strongly connected if there is a directed path from any vertex to any other vertex. Equivalently, there is no partition of the teams into groups A, B so that every team in A beats every team in B. Prove that every strongly connected tournament has a directed Hamiltonian cycle. Use this to show that for any team there is an ordering as in part (a) for which the given team is first. (c) A king in a tournament is a vertex such that there is a direct path of length at most 2 to any…arrow_forwardUse a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forward
- how to construct the following same table?arrow_forwardThe following is known. The complete graph K2t on an even number of vertices has a 1- factorization (equivalently, its edges can be colored with 2t - 1 colors so that the edges incident to each vertex are distinct). This implies that the complete graph K2t+1 on an odd number of vertices has a factorization into copies of tK2 + K₁ (a matching plus an isolated vertex). A group of 10 people wants to set up a 45 week tennis schedule playing doubles, each week, the players will form 5 pairs. One of the pairs will not play, the other 4 pairs will each play one doubles match, two of the pairs playing each other and the other two pairs playing each other. Set up a schedule with the following constraints: Each pair of players is a doubles team exactly 4 times; during those 4 matches they see each other player exactly once; no two doubles teams play each other more than once. (a) Find a schedule. Hint - think about breaking the 45 weeks into 9 blocks of 5 weeks. Use factorizations of complete…arrow_forward. The two person game of slither is played on a graph. Players 1 and 2 take turns, building a path in the graph. To start, Player 1 picks a vertex. Player 2 then picks an edge incident to the vertex. Then, starting with Player 1, players alternate turns, picking a vertex not already selected that is adjacent to one of the ends of the path created so far. The first player who cannot select a vertex loses. (This happens when all neighbors of the end vertices of the path are on the path.) Prove that Player 2 has a winning strategy if the graph has a perfect matching and Player 1 has a winning strategy if the graph does not have a perfect matching. In each case describe a strategy for the winning player that guarantees that they will always be able to select a vertex. The strategy will be based on using a maximum matching to decide the next choice, and will, for one of the cases involve using the fact that maximality means no augmenting paths. Warning, the game slither is often described…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

2.1 Introduction to inequalities; Author: Oli Notes;https://www.youtube.com/watch?v=D6erN5YTlXE;License: Standard YouTube License, CC-BY
GCSE Maths - What are Inequalities? (Inequalities Part 1) #56; Author: Cognito;https://www.youtube.com/watch?v=e_tY6X5PwWw;License: Standard YouTube License, CC-BY
Introduction to Inequalities | Inequality Symbols | Testing Solutions for Inequalities; Author: Scam Squad Math;https://www.youtube.com/watch?v=paZSN7sV1R8;License: Standard YouTube License, CC-BY