EBK ENGINEERING MECHANICS
15th Edition
ISBN: 9780137569830
Author: HIBBELER
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 2RP
The small 2-lb collar starting from rest at A slides down along the smooth rod. During the motion, the collar is acted upon by a force F = (10i + 6yj + 2zk} lb, where x· y, z are in feet. Determine the collar's speed when it strikes the wall at B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 180-g slider has a speed v= 1.4 m/s as it passes point A of the smooth guide, which lies in a horizontal plane. Determine the
magnitude R of the force which the guide exerts on the slider (a) just before it passes point A of the guide and (b) as it passes point B.
Answers:
(a) R₂ =
(b) RB =
i
i
-200 mm
B
N
N
Two identical 16-kg spheres are attached to the light rigid rod, which rotates in the horizontal plane centered at pin Part A: If the spheres are subjected to tangential forces of P = 10 N, and the rod is subjected to a couple moment M=(8t)N⋅mM=(8t)N⋅m, where t is in seconds, determine the speed of the spheres at the instant t = 4 s. The system starts from rest. Neglect the size of the spheres.
Express your answer to three significant figures and include the appropriate units.
The spring in the toy gun has an undeformed length of 110.1 mm. It compresses and
stops at the position shown. When the trigger is pulled, the spring decompresses 8.3
mm, and the 16.4-g ball moves down the barrel. Determine the speed in m/s of the ball
as it leaves the gun. Neglect friction.
k = 2 kN/m
50 mm
D
-150 mm
B
Chapter 14 Solutions
EBK ENGINEERING MECHANICS
Ch. 14 - Prob. 1FPCh. 14 - If the motor exerts a constant force of 300 N on...Ch. 14 - If the motor exerts a force of F = (600 + 2s2) N...Ch. 14 - The 1.8-Mg dragster is traveling at 125 m/s when...Ch. 14 - When s = 0.5 m, the spring is unstretched and the...Ch. 14 - The 5-lb collar is pulled by a cord that passes...Ch. 14 - Prob. 2PCh. 14 - The 100-kg crate is subjected to the forces shown....Ch. 14 - Determine the required height h of the roller...Ch. 14 - When the driver applies the brakes of a light...
Ch. 14 - Prob. 7PCh. 14 - The force F, acting in a constant direction on the...Ch. 14 - The 2-lb brick slides down a smooth roof, such...Ch. 14 - The two blocks A and B have weights WA = 60 lb and...Ch. 14 - A small box of mass m is given a speed of v=14gr...Ch. 14 - Prob. 18PCh. 14 - If the cord is subjected to a constant force of F=...Ch. 14 - The crash cushion for a highway barrier consists...Ch. 14 - The 25-lb block has an initial speed of v0 = 10...Ch. 14 - At a given instant the 10-lb block A is moving...Ch. 14 - Prob. 25PCh. 14 - The catapulting mechanism is used to propel the...Ch. 14 - Prob. 27PCh. 14 - Prob. 31PCh. 14 - When the 150-lb skier is at point A he has a speed...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - If the contact surface between the 20-kg block and...Ch. 14 - Prob. 8FPCh. 14 - Prob. 9FPCh. 14 - Prob. 10FPCh. 14 - Prob. 11FPCh. 14 - Prob. 12FPCh. 14 - The jeep has a weight of 2500 lb and an engine...Ch. 14 - Determine the power Input for a motor necessary to...Ch. 14 - An automobile having a mass of 2 Mg travels up a 7...Ch. 14 - Prob. 45PCh. 14 - To dramatize the loss of energy in an automobile,...Ch. 14 - Escalator steps move with a constant speed of 0.6...Ch. 14 - Prob. 48PCh. 14 - The 1000-lb elevator is hoisted by the pulley...Ch. 14 - The sports car has a mass of 2.3 Mg, and while it...Ch. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - The 50-lb block rests on the rough surface for...Ch. 14 - The 2-kg pendulum bob is released from rest when...Ch. 14 - Prob. 14FPCh. 14 - Prob. 15FPCh. 14 - Prob. 16FPCh. 14 - The 75-lb block is released from rest 5 ft above...Ch. 14 - Prob. 18FPCh. 14 - The girl has a mass of 40 kg and center of mass at...Ch. 14 - The 30-lb block A is placed on top of two nested...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - Prob. 71PCh. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - Prob. 76PCh. 14 - The roller coaster car having a mass m is released...Ch. 14 - The spring has a stiffness k = 200 N/m and an...Ch. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - When s = 0, the spring on the firing mechanism is...Ch. 14 - If the mass of the earth is Me, show that the...Ch. 14 - A rocket of mass m is fired vertically from the...Ch. 14 - The 4-kg smooth collar has a speed of 3 m/s when...Ch. 14 - Prob. 85PCh. 14 - Prob. 87PCh. 14 - Prob. 90PCh. 14 - The roller coaster car has a speed of 15 ft/s when...Ch. 14 - Prob. 1RPCh. 14 - The small 2-lb collar starting from rest at A...Ch. 14 - Prob. 3RPCh. 14 - Prob. 4RPCh. 14 - Prob. 5RPCh. 14 - Prob. 6RPCh. 14 - Prob. 7RPCh. 14 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- r= 0.3 (1 + cos 0) m 500 N/m The 3-kg collar slides along the smooth rod after being nudged from rest at A, and travels along the rod to pass point B. Given that the free length of the spring is 100 mm and that r is the actual length of the spring: Draw Free Body Diagrams for the collar at position A and at position B.arrow_forwardThe 2-lb collar starts from rest at A and is lifted by applying a constant vertical force F to the cord. The rod is smooth. h=9-ft. 3 ft В h F A Determine the Force required for the collar speed to be 5 ft.s at B ofarrow_forwardThe baggage truck A shown in the photo below has a weight of 900 lb and tows a 550-lb cart B and 325lb cart C. For a short time the driving frictional force developed at the wheels of the truck is 40t lb,where t is in seconds. If the truck starts from rest, determine its speed in 2 seconds. Also, what is thehorizontal force acting on the coupling between the truck and the cart B at this instant?arrow_forward
- Vị 100 km/h The 2-Mg car has a velocity of v, = 100 km/h when the driver sees an obstacle in front of the car. It takes 0.75 s for him to react and lock the brakes, causing the car to skid. If the car stops when it has travelled a distance of 175 m, determine the coefficient of kinetic friction between the tires and the road.arrow_forwardThe 5.27 kg collar B rests on the frictionless arm AA! The collar is held in place by the rope attached to drum D and rotates about O in a horizontal plane. The linear velocity of the collar B is increasing according to v = 0.2 t2 where v is in m/s and tis in seconds. Find the tension in the rope and the force of the bar on .the collar if 5 s,r= 0.558 m and 0 = 58° A A' Darrow_forwardshow the complete solution and show the free body diagramarrow_forward
- The 2-kg block B and 15-kg cylinder A are connected to a light cord that passes through a hole in the center of the smooth table. If the block is given a speed of v = 10 m/s, determine the radius r of the circular path along which it travels.arrow_forwardThe horizontal force P = 40-10t N (t is the time measured in seconds) is applied to the 2- kg collar that slides along the inclined rod. 2 kg- -P = (40– 10r)N At time t = 0, the position coordinate of the collar is x = 0, and its velocity is vo = 3 m/s directed down the rod. Find the time T and the speed Sof the collar when it returns to the position x = 0 for the first time. Neglect friction.arrow_forwardWhen s = 55 cm, the spring is unstretched and the 9-kg block has a speed of 6.19 m/s down the smooth plane. If the coefficient of kinetic friction between the surface and the block is 0.25, find the distance (mm) s at which the block stops. k = 208 N/m 6.19 m/s F = 118 N 30arrow_forward
- The van is traveling at 20 km/h when the coupling of the trailer at A fails. If the trailer has a mass of 250 kg and coasts 45 m before coming to rest, determine the constant horizontal force F created by rolling friction which causes the trailer to stop. Note: 3 decimal points in every answer.arrow_forwardA child having a mass of 30 kg holds her legs up as shown as she swings downward from rest at Ø1 = 30°. Her center of mass is located at point G1. When she is at the bottom position Ø = 0°, she suddenly lets her legs come down, shifting her center of mass to position G2. Determine her speed in the upswing due to this sudden movement and the angle Ø2 to which she swings before momentarily coming to rest. Treat the child's body as a particle. %3D 3 m 02 2.80 m 0, = 30° G2 G2arrow_forward4. The 5-lb collar slides on the smooth rod, so that when it is at A is has a speed of 10 ft/s. If the spring to which it is attached has an unstretched length of 3 ft and a stiffness of k = 16 lb/ft, determine the normal force on the collar and the acceleration of the collar at this instant. 10 ft/s cy =8-arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY