EBK ENGINEERING MECHANICS
15th Edition
ISBN: 9780137569830
Author: HIBBELER
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 14, Problem 78P
The spring has a stiffness k = 200 N/m and an unstretched length of 0 5 m. If it is attached to the 3-kg smooth collar and the collar is released from rest at A, determine the speed of the collar when it reaches B. Neglect the size of the collar.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The block has a mass of 40 kg and rests on the surface of the cart having a mass of 78 kg
If the spring which is attached to the cart and not the block is compressed 0.2 m and the system is released from rest, determine the speed of the block with respect to the cart after the spring becomes undeformed. Neglect the mass of the wheels and the spring in the calculation. Also neglect friction. Take k = 310 N/m
The 5-lb collar slides on the smooth rod, so that when
it is at 4 it has a speed of 10 ft/s. If the spring to
which it is attached has an unstretched length of 3 ft.
and a stiffness of k = 10 lb/ft, determine the normal
force on the collar and the acceleration of the collar at
this instant.
Solution:
2 ft
10 ft/s
The spring of constant k = 120 N/m is unstretched when the slider of mass m = 1.6 kg passes position B. If the slider is released fre
rest in position A, determine its speed as it passes points B and C. What is the normal force exerted by the guide on the slider at
position C? Neglect friction between the mass and the circular guide, which lies in a vertical plane. The distance R = 0.95 m.
m
B
Answers
Vg =
m/s
Vc=
i
m/s
Nc=
Chapter 14 Solutions
EBK ENGINEERING MECHANICS
Ch. 14 - Prob. 1FPCh. 14 - If the motor exerts a constant force of 300 N on...Ch. 14 - If the motor exerts a force of F = (600 + 2s2) N...Ch. 14 - The 1.8-Mg dragster is traveling at 125 m/s when...Ch. 14 - When s = 0.5 m, the spring is unstretched and the...Ch. 14 - The 5-lb collar is pulled by a cord that passes...Ch. 14 - Prob. 2PCh. 14 - The 100-kg crate is subjected to the forces shown....Ch. 14 - Determine the required height h of the roller...Ch. 14 - When the driver applies the brakes of a light...
Ch. 14 - Prob. 7PCh. 14 - The force F, acting in a constant direction on the...Ch. 14 - The 2-lb brick slides down a smooth roof, such...Ch. 14 - The two blocks A and B have weights WA = 60 lb and...Ch. 14 - A small box of mass m is given a speed of v=14gr...Ch. 14 - Prob. 18PCh. 14 - If the cord is subjected to a constant force of F=...Ch. 14 - The crash cushion for a highway barrier consists...Ch. 14 - The 25-lb block has an initial speed of v0 = 10...Ch. 14 - At a given instant the 10-lb block A is moving...Ch. 14 - Prob. 25PCh. 14 - The catapulting mechanism is used to propel the...Ch. 14 - Prob. 27PCh. 14 - Prob. 31PCh. 14 - When the 150-lb skier is at point A he has a speed...Ch. 14 - Prob. 39PCh. 14 - Prob. 40PCh. 14 - If the contact surface between the 20-kg block and...Ch. 14 - Prob. 8FPCh. 14 - Prob. 9FPCh. 14 - Prob. 10FPCh. 14 - Prob. 11FPCh. 14 - Prob. 12FPCh. 14 - The jeep has a weight of 2500 lb and an engine...Ch. 14 - Determine the power Input for a motor necessary to...Ch. 14 - An automobile having a mass of 2 Mg travels up a 7...Ch. 14 - Prob. 45PCh. 14 - To dramatize the loss of energy in an automobile,...Ch. 14 - Escalator steps move with a constant speed of 0.6...Ch. 14 - Prob. 48PCh. 14 - The 1000-lb elevator is hoisted by the pulley...Ch. 14 - The sports car has a mass of 2.3 Mg, and while it...Ch. 14 - Prob. 54PCh. 14 - Prob. 55PCh. 14 - The 50-lb block rests on the rough surface for...Ch. 14 - The 2-kg pendulum bob is released from rest when...Ch. 14 - Prob. 14FPCh. 14 - Prob. 15FPCh. 14 - Prob. 16FPCh. 14 - The 75-lb block is released from rest 5 ft above...Ch. 14 - Prob. 18FPCh. 14 - The girl has a mass of 40 kg and center of mass at...Ch. 14 - The 30-lb block A is placed on top of two nested...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - The 5-kg collar has a velocity of 5 m/s to the...Ch. 14 - Prob. 71PCh. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - The roller coaster car has a mass of 700 kg,...Ch. 14 - Prob. 76PCh. 14 - The roller coaster car having a mass m is released...Ch. 14 - The spring has a stiffness k = 200 N/m and an...Ch. 14 - Prob. 79PCh. 14 - Prob. 80PCh. 14 - When s = 0, the spring on the firing mechanism is...Ch. 14 - If the mass of the earth is Me, show that the...Ch. 14 - A rocket of mass m is fired vertically from the...Ch. 14 - The 4-kg smooth collar has a speed of 3 m/s when...Ch. 14 - Prob. 85PCh. 14 - Prob. 87PCh. 14 - Prob. 90PCh. 14 - The roller coaster car has a speed of 15 ft/s when...Ch. 14 - Prob. 1RPCh. 14 - The small 2-lb collar starting from rest at A...Ch. 14 - Prob. 3RPCh. 14 - Prob. 4RPCh. 14 - Prob. 5RPCh. 14 - Prob. 6RPCh. 14 - Prob. 7RPCh. 14 - Prob. 8RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The 50-kg crate is hoisted up the 30o incline by the pulley system and motor M. If the crate starts from rest and by constant acceleration attains a speed of 6.4 m/s after traveling 18.1 m along the plane, determine the power in kW that must be supplied to the motor at this instant. Neglect friction along the plane. The motor has an efficiency ϵ = 0.78.arrow_forwardThe 5.27 kg collar B rests on the frictionless arm AA! The collar is held in place by the rope attached to drum D and rotates about O in a horizontal plane. The linear velocity of the collar B is increasing according to v = 0.2 t2 where v is in m/s and tis in seconds. Find the tension in the rope and the force of the bar on .the collar if 5 s,r= 0.558 m and 0 = 58° A A' Darrow_forwardThe 5-lb collar is released from rest at A and travels along the frictionless guide. Determine the speed of the collar when it strikes the stop B. The spring has an unstretched length of 0.5 ft. -k = 4 lb/ft 15 ftarrow_forward
- 5. The spring has a stiffness k = 150 N/m and an unstretched length of 0.5 m. If it is attached to the 3-kg smooth collar and the collar is released from rest at A, determine the speed of the collar when it reaches B. Neglect the size of the collar. 150 N/m 2 m В 1.5 m wwwwarrow_forwardQ1/. The spring has a stiffness k = 200 N /m and an unstretched length of 0.5 m. If it is attached to the 3 kg smooth collar and the collar is released from rest at B, determine the speed of the collar when it reaches A. Neglect the size of the collar. B k= 200 N/m 2 m 0.5 m Figure.1arrow_forwardThe block has a mass of 50 kg and rests on the surface of the cart having a mass of 75 kg. If the spring which is attached to the cart and not the block is compressed 0.2 m and the system is released from rest, determine the speed of the block with respect to the cart after the springg becomes undeformed. Neglect the mass of the wheels and the spring in the calculation. Also the neglect friction. Take k = 300N/m,arrow_forward
- When s = 55 cm, the spring is unstretched and the 9-kg block has a speed of 6.19 m/s down the smooth plane. If the coefficient of kinetic friction between the surface and the block is 0.25, find the distance (mm) s at which the block stops. k = 208 N/m 6.19 m/s F = 118 N 30arrow_forwardThe 56.28 kg crate is hoisted up the 0 = 27° incline by the pulley system and motor M. If the crate starts from rest and, by constant acceleration, attains a speed of 8.17 m/s after traveling 7.84 m along the plane, determine the supplied power to the motor if the crate has moved 8 m and the coefficient of kinetic friction between the plane and the crate is Hk = 0.3. Neglect friction along the plane. The motor has an efficiency of 0.691. Marrow_forwardA freight elevator, including its load, has a mass of 1.1 Mg. It is prevented from rotating due to the track and wheels mounted along its sides. If the motor M develops a constant tension T = 6.9 kN in its attached cable, determine the velocity of the elevator when it has moved upward 7.2 m starting from rest. Neglect the mass of the pulleys and cables.arrow_forward
- The 15-kg collar has a velocity of 10 m/s at A while travelling towards B along the smooth guide. The spring which is connected to the collar has an unstretched length of 125 mm and stiffness k= 57 N/m. Determine the collar's speed when it reaches point B, which is located just before the end of the curved portion of the rod. Take point B as the datum.arrow_forward5. The 5-lb cylinder is falling from A with a speed of va = 10 ft/s onto the platform. Determine the maximum displacement of the platform, caused by the collision. The spring has an unstretched length of 1.5 ft and is originally kept in compression by the 1-ft long cables attached to the platform. Neglect the mass of the platform and spring and any energy lost during the collision. DA = 10 ft/s 3 ft k = 400 lb/ft 1ftarrow_forwardThe spring in the toy gun has an undeformed length of 110.1 mm. It compresses and stops at the position shown. When the trigger is pulled, the spring decompresses 8.3 mm, and the 16.4-g ball moves down the barrel. Determine the speed in m/s of the ball as it leaves the gun. Neglect friction. k = 2 kN/m 50 mm D -150 mm Barrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license