(a)
Interpretation:
(b)
Interpretation:
Electrode at which oxidation takes place.
(c)
Interpretation:
A chemical process where oxidation number of an atom decreases.
(d)
Interpretation:
The process taking place in one of the compartments of an electrochemical cell.
(e)
Interpretation:
A portable source of energy obtained by connecting one or more voltaic cells.
(f)
Interpretation:
Device of an electrochemical cell which prevents electrolytes from mixing and electrical neutrality is maintained by it.
(g)
Interpretation:
A substance that decreases the oxidation state of another substance.
(h)
Interpretation:
The process in which a non-spontaneous reaction occurs due to
(i)
Interpretation:
The
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
ALEKS 360 AC INTRD CHEM >I<
- The following two half-reactions arc involved in a voltaic cell. At standard conditions, what species is produced at each electrode? Ag++eAgE=0.80VNi2++2eNiE=0.25Varrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardDiagram the following galvanic cell, indicating the directionof flow of electrons in the external circuit and themotion of ions in the salt bridge. Pt(s)|Cr2+(aq),Cr3+(aq)||Cu2+(aq)|Cu(s) Write a balanced equation for the overall reaction in thiscell.arrow_forward
- A potassium chloride solution is electrolyzed by passing a current through the solution using inert electrodes. A gas evolves at each electrode, and there is a large increase in pH of the solution. Write the half-reactions that occur at the anode and at the cathode.arrow_forwardUse the data from the table of standard reduction potentials in Appendix H to calculate the standard potential of the cell based on each of the following reactions. In each case, state whether the reaction proceeds spontaneously as written or spontaneously in the reverse direction under standard-state conditions. (a) H2(g)+Cl2(g)2H+(aq)+2Cl(aq) (b) Al3+(aq)+3Cr2+(aq)Al(s)+3Cr3+(aq) (c) Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)arrow_forwardConsider a salt bridge cell in which the anode is a manganese rod immersed in an aqueous solution of manganese(II) sulfate. The cathode is a chromium strip immersed in an aqueous solution of chromium(III) sulfate. Sketch a diagram of the cell, indicating the flow of the current throughout. Write the half-equations for the electrode reactions, the overall equation, and the abbreviated notation for the cell.arrow_forward
- Give the notation for a voltaic cell whose overall cell reaction is Mg(s)+2Ag+(aq)Mg2+(aq)+2Ag(s) What are the half-cell reactions? Label them as anode or cathode reactions. What is the standard cell potential of this cell?arrow_forwardGive balanced equations for the overall reaction in the electrolysis of molten lithium chloride and for the reactions occurring at the electrodes. You may wish to review the Chapter on electrochemistry for relevant examples.arrow_forwardDetermine the overall reaction and its standard cell potential at 25 C for the reaction involving the galvanic cell in which cadmium metal is oxidized to 1 M cadmium(II) ion and a half—cell consisting of an aluminum electrode in 1 M aluminum nitrate solution. 15 the reaction spontaneous at standard conditions?arrow_forward
- For each reaction listed, determine its standard cell potential at 25 C and whether the reaction is spontaneous at standard conditions. (a) Mn(s)+Ni2+(aq)Mn2+(aq)+Ni(s) (b) 3Cu2+(aq)+2Al(s)2Al3+(aq)+3Cu(s) (c) Na(s)+LiNO3(aq)NaNO3(aq)+Li(s) (d) Ca(NO3)2(aq)+Ba(s)Ba(NO3)2(aq)+Ca(s)arrow_forwardElectrochemical Cells II Consider this cell running under standard conditions: Ni(s)Ni2(aq)Cu+(aq)Cu(s) a Is this cell a voltaic or an electrolytic cell? How do you know? b Does current flow in this cell spontaneously? c What is the maximum cell potential for this cell? d Say the cell is connected to a voltmeter. Describe what you might see for an initial voltage and what voltage changes, if any, you would observe as time went by. e What is the free energy of this cell when it is first constructed? f Does the free energy of the cell change over time as the cell runs? If so, how does it change?arrow_forwardHalf-cells were made from a nickel rod dipping in a nickel sulfate solution and a silver rod dipping in a silver nitrate solution. The half-reactions in a voltaic cell using these half-cells were Ag+(aq)+eAg(s)Ni(s)Ni2+(aq)+2e Sketch the cell and label the anode and cathode, showing the corresponding electrode reactions. Give the direction of electron flow and the movement of cations.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemical Principles in the LaboratoryChemistryISBN:9781305264434Author:Emil Slowinski, Wayne C. Wolsey, Robert RossiPublisher:Brooks ColeChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning