
Concept explainers
The rating of speed reducer for power
The rating of speed reducer for nitrided power

Answer to Problem 26P
The rating of speed reducer for power is
The rating of speed reducer for nitrided power is
Explanation of Solution
Write the expression for diameter of pinion.
Here, the number of teeth on pinion is
Write the expression for diameter of the gear.
Here, the number of teeth on gear is
Write the expression for velocity of the pinion.
Here, the number of rotation made by pinion is
Write the expression for constant of transmission accuracy level number.
Here, the transmission accuracy level number is
Write the expression for constant
Write the expression for dynamic factor.
Write the expression for allowable bending stress number through hardened steels.
Here, the brinel hardness number is
Write the expression for stress cycle factor for bending.
Here, the number of cycles is
Write the expression for allowable stress.
Here, the reliability factor is
Write the expression for load correction factor for uncrowned teeth.
Write the expression for pinion proportion factor.
Here, the face width is
Write the expression for pinion proportion modifier for straddle mounted pinion.
Write the expression for mesh alignment factor.
Here, the empirical constant is
Write the expression for mesh alignment correction factor.
Write the expression for load distribution factor
Write the expression for overload factor for pinion.
Write the expression for overload factor for gear.
Write the expression for transmitted load in pinion.
Here, the spur gear geometry factor is
Write the expression for power for pinion.
Write the expression for transmitted load for gear.
Write the expression for power for gear.
Write the expression for gear ratio.
Here, the number of teeth on gear is
Write the expression for pitting resistance stress cycle factor for pinion.
Write the expression for pitting resistance stress cycle factor for gear.
Write the expression for geometry factor.
Here, the pressure angle is
Write the expression for hardness ratio factor
Write the expression for contact fatigue strength for pinion.
Write the expression for contact fatigue strength for gear.
Write the expression for pinion contact endurance strength.
Write the expression for transmitted load.
Write the expression for power of pinion.
Write the expression for gear contact strength.
Write the expression for transmitted load.
Her, the elastic coefficient is
Write the expression for power of gear.
Write the expression for contact fatigue strength for pinion for nitride.
Write the expression for contact fatigue strength for gear.
Write the expression for pinion contact endurance strength.
Write the expression for transmitted load.
Write the expression for power of pinion.
Write the expression for gear contact strength.
Write the expression for transmitted load.
Her, the elastic coefficient is
Write the expression for power of gear.
Write the expression for rated power.
Write the expression for rated power for nitrided.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Refer to table 14-9, “Empirical constant
Substitute
Substitute
Refer Figure 14-6, “spur gear geometry factor”, to obtain the geometry factor for number of teeth
Since the thickness of gear is constant so
Since the loading is uniform so
Refer table 14-2, “values of the lewis form factor
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the rating of speed reducer for power is
Substitute
Thus, the rating of speed reducer for nitrided power is
Want to see more full solutions like this?
Chapter 14 Solutions
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
- Thermodynamics: Mass and Energy Analysis Of Control Volumes 1.5-kg of water that is initially at 90◦C with a quality of 5 percent occupies a spring-loaded piston-cylinder device. This device is now heated until the pressure rises to 900 kPa and the temperature is 280◦C. Determinethe total work produced during this process, in kJ.arrow_forwardThermodynamics: Mass and Energy Analysis Of Control Volumes Stainless steel ball bearings (ρ = 8085 kg/m3 and cp = 0.480 kJ/(kg◦C)) having a diameter of 1.5 cm areto be quenched in water at a rate of 900 per minute. The balls leave the oven at a uniform temperature of1000◦C and are exposed to air at 25◦C for a while before they are dropped into the water. If the temperatureof the balls drops to 900◦C prior to quenching, determine the rate of heat transfer from the balls to the air.arrow_forwardThermodynamics: Mass and Energy Analysis Of Control Volumes A 12-ft3 tank contains oxygen at 15 psia and 80◦F. A paddle wheel within the tank is rotated until thepressure inside rises to 20 psia. During the process 25 Btu of heat is lost to the surroundings. Determine thepaddle wheel work done. Neglect the energy stored in the paddle wheel.arrow_forward
- Thermodynamics: Mass and Energy Analysis Of Control Volumes A frictionless piston-cylinder device contains 4.5 kg of nitrogen at 110 kPa and 200 K. Nitrogen is nowcompressed slowly according to the relation PV1.5 = constant until it reaches a final temperature of 360 K.Calculate the work input during the process, in kJ.arrow_forwardThermodynamics: Mass and Energy Analysis Of Control Volumes An insulated piston-cylinder device contains 4 L of saturated liquid water at a constant pressure of 200 kPa.Water is stirred by a paddle wheel while a current of 8 A flows for 50 min through a resistor placed in thewater. If one-half of the liquid is evaporated during this constant-pressure process and the paddle-wheelwork amounts to 300 kJ, determine the voltage of the source. Also, show the process on a P–v diagram withrespect to the saturation lines.arrow_forwardThermodynamics: Mass and Energy Analysis Of Control Volumes The state of liquid water is changed from 55 psia and 45◦F to 2000 psia and 120◦F. Determine the change inthe internal energy and enthalpy of water on the basis of the (a) compressed liquid tables, (b) incompressiblesubstance approximation and property tables, and (c) specific-heat model.arrow_forward
- Thermodynamics: Mass and Energy Analysis Of Control Volumes What is the change in enthalpy, in kJ/kg, of oxygen as its temperature changes from 150 to 250◦C? Is thereany difference if the temperature change were from −50 to 100◦C? Does the pressure at the beginning andend of this process have any effect on the enthalpy change?arrow_forwardThermodynamics: Mass and Energy Analysis Of Control Volumes A 50-L electrical radiator containing heating oil is placed in a 50-m3 room. Both the room and the oil in theradiator are initially at 5◦C. The radiator with a rating of 3 kW is now turned on. At the same time, heatis lost from the room at an average rate of 0.3 kJ/s. After some time, the average temperature is measuredto be 20◦C for the air in the room, and 60◦C for the oil in the radiator. Taking the density and the specificheat of the oil to be 950 kg/m3 and 2.2 kJ/(kg◦C), respectively, determine how long the heater is kept on.Assume the room is well-sealed so that there are no air leaks.arrow_forwardProblem 3 For the beam and loading shown, consider section n-n and determine (a) the largest shearing stress in that section, (b) the shearing stress at point a. 1ft 15 kips 20 kips 15 kips AITT in 1 0.6 in. -10 in. 1 in. 0.375 in.- 2 ft 2ft 2 ft 2ft 10 in. 1 0.6 in.arrow_forward
- practice problems want detailed break downarrow_forward6.105. Determine force P on the cable if the spring is compressed 0.025 m when the mechanism is in the position shown. The spring has a stiffness of k = 6 kN/m. E P 150 mm D T 30° 200 mm 200 mm 200 mm B 800 mmarrow_forward6.71. Determine the reactions at the supports A, C, and E of the compound beam. 3 kN/m 12 kN A B CD E -3 m 4 m 6 m 3 m 2 marrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





