
Concept explainers
The rating of speed reducer for power
The rating of speed reducer for nitrided power

Answer to Problem 26P
The rating of speed reducer for power is
The rating of speed reducer for nitrided power is
Explanation of Solution
Write the expression for diameter of pinion.
Here, the number of teeth on pinion is
Write the expression for diameter of the gear.
Here, the number of teeth on gear is
Write the expression for velocity of the pinion.
Here, the number of rotation made by pinion is
Write the expression for constant of transmission accuracy level number.
Here, the transmission accuracy level number is
Write the expression for constant
Write the expression for dynamic factor.
Write the expression for allowable bending stress number through hardened steels.
Here, the brinel hardness number is
Write the expression for stress cycle factor for bending.
Here, the number of cycles is
Write the expression for allowable stress.
Here, the reliability factor is
Write the expression for load correction factor for uncrowned teeth.
Write the expression for pinion proportion factor.
Here, the face width is
Write the expression for pinion proportion modifier for straddle mounted pinion.
Write the expression for mesh alignment factor.
Here, the empirical constant is
Write the expression for mesh alignment correction factor.
Write the expression for load distribution factor
Write the expression for overload factor for pinion.
Write the expression for overload factor for gear.
Write the expression for transmitted load in pinion.
Here, the spur gear geometry factor is
Write the expression for power for pinion.
Write the expression for transmitted load for gear.
Write the expression for power for gear.
Write the expression for gear ratio.
Here, the number of teeth on gear is
Write the expression for pitting resistance stress cycle factor for pinion.
Write the expression for pitting resistance stress cycle factor for gear.
Write the expression for geometry factor.
Here, the pressure angle is
Write the expression for hardness ratio factor
Write the expression for contact fatigue strength for pinion.
Write the expression for contact fatigue strength for gear.
Write the expression for pinion contact endurance strength.
Write the expression for transmitted load.
Write the expression for power of pinion.
Write the expression for gear contact strength.
Write the expression for transmitted load.
Her, the elastic coefficient is
Write the expression for power of gear.
Write the expression for contact fatigue strength for pinion for nitride.
Write the expression for contact fatigue strength for gear.
Write the expression for pinion contact endurance strength.
Write the expression for transmitted load.
Write the expression for power of pinion.
Write the expression for gear contact strength.
Write the expression for transmitted load.
Her, the elastic coefficient is
Write the expression for power of gear.
Write the expression for rated power.
Write the expression for rated power for nitrided.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Refer to table 14-9, “Empirical constant
Substitute
Substitute
Refer Figure 14-6, “spur gear geometry factor”, to obtain the geometry factor for number of teeth
Since the thickness of gear is constant so
Since the loading is uniform so
Refer table 14-2, “values of the lewis form factor
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the rating of speed reducer for power is
Substitute
Thus, the rating of speed reducer for nitrided power is
Want to see more full solutions like this?
Chapter 14 Solutions
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
- 1. The rotating steel shaft is simply supported by bearings at points of B and C, and is driven by a spur gear at D, which has a 6-in pitch diameter. The force F from the drive gear acts at a pressure angle of 20°. The shaft transmits a torque to point A of TA =3000 lbĘ in. The shaft is machined from steel with Sy=60kpsi and Sut=80 kpsi. (1) Draw a shear force diagram and a bending moment diagram by F. According to your analysis, where is the point of interest to evaluate the safety factor among A, B, C, and D? Describe the reason. (Hint: To find F, the torque Tд is generated by the tangential force of F (i.e. Ftangential-Fcos20°) When n=2.5, K=1.8, and K₁ =1.3, determine the diameter of the shaft based on (2) static analysis using DE theory (note that fatigue stress concentration factors need to be used for this question because the loading condition is fatigue) and (3) a fatigue analysis using modified Goodman. Note) A standard diameter is not required for the questions. 10 in Darrow_forward3 N2=28 P(diametral pitch)=8 for all gears Coupled to 25 hp motor N3=34 Full depth spur gears with pressure angle=20° N₂=2000 rpm (1) Compute the circular pitch, the center-to-center distance, and base circle radii. (2) Draw the free body diagram of gear 3 and show all the forces and the torque. (3) In mounting gears, the center-to-center distance was reduced by 0.1 inch. Calculate the new values of center-to-center distance, pressure angle, base circle radii, and pitch circle diameters. (4)What is the new tangential and radial forces for gear 3? (5) Under the new center to center distance, is the contact ratio (mc) increasing or decreasing?arrow_forward2. A flat belt drive consists of two 4-ft diameter cast-iron pulleys spaced 16 ft apart. A power of 60 hp is transmitted by a pulley whose speed is 380 rev/min. Use a service factor (Ks) pf 1.1 and a design factor 1.0. The width of the polyamide A-3 belt is 6 in. Use CD=1. Answer the following questions. (1) What is the total length of the belt according to the given geometry? (2) Find the centrifugal force (Fc) applied to the belt. (3) What is the transmitted torque through the pulley system given 60hp? (4) Using the allowable tension, find the force (F₁) on the tight side. What is the tension at the loose side (F2) and the initial tension (F.)? (5) Using the forces, estimate the developed friction coefficient (f) (6) Based on the forces and the given rotational speed, rate the pulley set. In other words, what is the horse power that can be transmitted by the pulley system? (7) To reduce the applied tension on the tight side, the friction coefficient is increased to 0.75. Find out the…arrow_forward
- The tooth numbers for the gear train illustrated are N₂ = 24, N3 = 18, №4 = 30, №6 = 36, and N₁ = 54. Gear 7 is fixed. If shaft b is turned through 5 revolutions, how many turns will shaft a make? a 5 [6] barrow_forwardCE-112 please solve this problem step by step and give me the correct answerarrow_forwardCE-112 please solve this problem step by step and give me the correct answerarrow_forward
- CE-112 solve this problem step by step and give me the correct answer pleasearrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning





