
Concept explainers
Review. Assume a certain liquid, with density 1 230 kg/m3, exerts no friction force on spherical objects. A ball of mass 2.10 kg and radius 9.00 cm is dropped from rest into a deep tank of this liquid from a height of 3.30 m above the surface. (a) Find the speed at which the hall enters the liquid. (b) Evaluate the magnitudes of the two forces that are exerted on the ball as it moves through the liquid. (c) Explain why the ball moves down only a limited distance into the liquid and calculate this distance. (d) With what speed will the ball pop up out of the liquid? (c) How does the time interval ∆tdown, during which the ball moves from the surface down to its lowest point, compare with the lime interval ∆tup for the return trip between the same two points? (f) What If? Now modify the model to suppose the liquid exerts a small friction force on the ball, opposite in direction to its motion. In this case, how do the time intervals ∆tdown and ∆tup compare? Explain your answer with a conceptual argument rather than a numerical calculation.
(a)

The speed of the ball which enters the liquid.
Answer to Problem 14.64AP
The speed of the ball which enters the liquid is
Explanation of Solution
The density of the liquid is
By the conservation of energy,
Here,
Substitute
Conclusion:
Therefore, the speed of the ball which enters the liquid is
(b)

The magnitudes of the two forces that are exerted on the ball as move through liquid.
Answer to Problem 14.64AP
The magnitude of the gravitational force that is exerted on the ball as move through liquid is
Explanation of Solution
Formula to calculate the gravitational force or weight of the ball is,
Here,
Substitute
Thus, the gravitational force exerted on the ball is
The buoyant force exerted on the ball is equal to the volume of water displaced by the ball.
Formula to calculate the buoyant force exerted on the ball is,
Here,
Formula to calculate the volume of the spherical ball is,
Here,
Substitute
Substitute
Conclusion:
Therefore, the magnitudes of the gravitational force that are exerted on the ball as move through liquid is
(c)

The distance covered by the ball in water.
Answer to Problem 14.64AP
The distance covered by the ball in water is
Explanation of Solution
The buoyant force exerted on the ball is greater than the weight of the ball, therefore the ball certain distance covered inside the water because it changes the direction of motion.
From third law of motion,
Here,
Formula to calculate the acceleration of the ball is,
Formula to calculate the net force acting on a ball is,
Substitute
Substitute
Substitute
The negative sign shows direction of the ball in downward direction.
Conclusion:
Therefore, the distance covered by the ball in water is
(d)

The speed of the ball pop up out of the liquid.
Answer to Problem 14.64AP
The speed of the ball which enters the liquid is
Explanation of Solution
The speed of the ball which enters the liquid is equal to the speed of the ball pop up out of the liquid because absence of friction, no energy losses occur in this system. Hence the speed of the ball pop up out of the liquid is
Conclusion:
Therefore, the speed will the ball pop up out of the liquid is
(e)

The result of comparison the time interval during which the ball moves from the surface to its lowest point with the time interval for return trip at the same point.
Answer to Problem 14.64AP
The time interval during which the ball moves from the surface to its lowest point is identical to the time interval for return trip at the same point.
Explanation of Solution
The time interval during which the ball moves from the surface to its lowest point is identical to the time interval for return trip at the same point because ball going down and up acceleration of the ball and distance covered by the ball is same.
Conclusion:
Therefore, the time interval during which the ball moves from the surface to its lowest point is identical to the time interval for return trip at the same point.
(f)

Compare the time interval during which the ball moves from the surface to its lowest point with the time interval for return trip at the same point.
Answer to Problem 14.64AP
The time interval during which the ball moves from the surface to its lowest point is not equal to the time interval for return trip at the same point.
Explanation of Solution
The time interval during which the ball moves from the surface to its lowest point is not equal to the time interval for return trip at the same point when friction is present because energy losses by the system.
Conclusion:
Therefore, the time interval during which the ball moves from the surface to its lowest point is not equal to the time interval for return trip at the same point.
Want to see more full solutions like this?
Chapter 14 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Additional Science Textbook Solutions
Anatomy & Physiology (6th Edition)
Fundamentals Of Thermodynamics
Applications and Investigations in Earth Science (9th Edition)
Genetics: From Genes to Genomes
Fundamentals of Anatomy & Physiology (11th Edition)
- Q: What is the direction of the force on the current carrying conductor in the magnetic field in each of the cases 1 to 8 shown below? (1) B B B into page X X X x X X X X (2) B 11 -10° B x I B I out of page (3) I into page (4) B out of page out of page I N N S x X X X I X X X X I (5) (6) (7) (8) Sarrow_forwardQ: What is the direction of the magnetic field at point A, due to the current I in a wire, in each of the cases 1 to 6 shown below? Note: point A is in the plane of the page. ▪A I I ▪A (1) (2) ▪A • I (out of page) (3) ▪A I x I (into page) ▪A ▪A I (4) (5) (6)arrow_forwardA tennis ball is thrown into the air with initial speed vo=46 m/s and angle (theta) 38 degrees from the ground. Find the distance it travels (x) when it hits the ground.arrow_forward
- Problem 04.08 (17 points). Answer the following questions related to the figure below. ථි R₁ www R₂ E R₁ www ли R₁ A Use Kirchhoff's laws to calculate the currents through each battery and resistor in terms of R1, R2, E1, & E2. B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2, which direction is the current flowing through E₁? Through R₂? C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through R2?arrow_forwardA 105- and a 45.0-Q resistor are connected in parallel. When this combination is connected across a battery, the current delivered by the battery is 0.268 A. When the 45.0-resistor is disconnected, the current from the battery drops to 0.0840 A. Determine (a) the emf and (b) the internal resistance of the battery. 10 R2 R₁ ww R₁ Emf 14 Emf Final circuit Initial circuitarrow_forwardA ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.arrow_forward
- Correct answer please. I will upvote.arrow_forwardDefine operational amplifierarrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 9 V 300 Ω www 100 Ω 200 Ω www 400 Ω 500 Ω www 600 Ω ww 700 Ω Figure 1: Circuit symbols for a variety of useful circuit elements Problem 04.07 (17 points). Answer the following questions related to the figure below. A What is the equivalent resistance of the network of resistors in the circuit below? B If the battery has an EMF of 9V and is considered as an ideal batter (internal resistance is zero), how much current flows through it in this circuit? C If the 9V EMF battery has an internal resistance of 2 2, would this current be larger or smaller? By how much? D In the ideal battery case, calculate the current through and the voltage across each resistor in the circuit.arrow_forwardhelparrow_forwardIf the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





