An 85.0-kg mountain climber plans to swing down, starting from rest, from a ledge using a light rope 6.50 m long. He holds one end of the rope, and the other end is tied higher up on a rock face. Since the ledge is not very far from the rock face, the rope makes a small angle with the vertical. At the lowest point of his swing, he plans to let go and drop a short distance to the ground. (a) How long after he begins his swing will the climber first reach his lowest point? (b) If he missed the first chance to drop off, how long after first beginning his swing will the climber reach his lowest point for the second time?
An 85.0-kg mountain climber plans to swing down, starting from rest, from a ledge using a light rope 6.50 m long. He holds one end of the rope, and the other end is tied higher up on a rock face. Since the ledge is not very far from the rock face, the rope makes a small angle with the vertical. At the lowest point of his swing, he plans to let go and drop a short distance to the ground. (a) How long after he begins his swing will the climber first reach his lowest point? (b) If he missed the first chance to drop off, how long after first beginning his swing will the climber reach his lowest point for the second time?
An 85.0-kg mountain climber plans to swing down, starting from rest, from a ledge using a light rope 6.50 m long. He holds one end of the rope, and the other end is tied higher up on a rock face. Since the ledge is not very far from the rock face, the rope makes a small angle with the vertical. At the lowest point of his swing, he plans to let go and drop a short distance to the ground. (a) How long after he begins his swing will the climber first reach his lowest point? (b) If he missed the first chance to drop off, how long after first beginning his swing will the climber reach his lowest point for the second time?
A blacksmith cools a 1.60 kg chunk of iron, initially
at a temperature of 650.0° C, by trickling 30.0°C
water over it. All the water boils away, and the iron
ends up at a temperature of 120.0° C.
For related problem-solving tips and strategies, you
may want to view a Video Tutor Solution of
Changes in both temperature and phase.
Part A
How much water did the blacksmith trickle over the iron?
Express your answer with the appropriate units.
HÅ
mwater =
Value
0
?
Units
Submit
Request Answer
Steel train rails are laid in 13.0-m-long segments
placed end to end. The rails are laid on a winter
day when their temperature is -6.0° C.
Part A
How much space must be left between adjacent rails if they are just to touch on a summer day when their
temperature is 32.0°C?
Express your answer with the appropriate units.
☐
о
μΑ
?
D =
Value
Units
Submit
Previous Answers Request Answer
× Incorrect; Try Again; 3 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Part B
If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is
32.0°C?
Express your answer in pascals. Enter positive value if the stress is tensile and negative value if the
stress is compressive.
F
A
Ο ΑΣΦ
?
Ра
help me with this and the step I am so confused. It should look something like the figure i shown
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY