INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
8th Edition
ISBN: 9781260940961
Author: SMITH
Publisher: INTER MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 14, Problem 14.29P
Oil refineries often have both H2S and SO2 to dispose of. The following reaction suggests a means of getting rid of both at once:
For reactants in the stoichiometric proportion, estimate the percent conversion of each reactant if the reaction comes to equilibrium at 450°C and 8 bar.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q/ 8-17 cylindrical reactor core is 4 ft in diameter and 4.8 ft height. The maximum neutron flux
is 1013. The extrapolation length are 0.186 ft in the radial direction and 0.3 ft in the axial
direction. The fuel is 20% enriched UO2.0= 500 b. Determine (a) The neutron flux at the upper
and lower rims, and (b) the maximum heat generated in the fuel in [MeV/s cm³] and [Btu/hr ft³).
LATIHAN
8.5-4. Concentration of NaOH Solution in Triple-Effect Evaporator. A forced-circulation
triple-effect evaporator using forward feed is to be used to concentrate a 10 wt
% NaOH solution entering at 37.8°C to 50%. The steam used enters at 58.6 kPa
gage. The absolute pressure in the vapor space of the third effect is 6.76 kPa.
The feed rate is 13 608 kg/h. The heat-transfer coefficients are U₁ = 6246, U2
= 3407, and U3 = 2271 W/m² K. All effects have the same area. Calculate the
surface area and steam consumption.
8.5-1. Boiling Points in a Triple-Effect Evaporator. A solution with a negligible boiling-
point rise is being evaporated in a triple-effect evaporator using saturated steam
at 121.1°C (394.3 K). The pressure in the vapor of the last effect is 25.6 kPa abs.
The heat-transfer coefficients are U₁ = 2840, U₂ = 1988, and U₁ = 1420
W/m² K and the areas are equal. Estimate the boiling point in each of the
evaporators.
The power generation unit in a plant uses a hot exhaust gas from another process to produce work. The gas enters at 10 bar and 350°C and exits at 1 bar and 40°C. The process produces a net amount of work equal to 4500 J/mol and it exchanges an unknown amount of heat with the surroundings. 1.1 Determine the amount of heat exchanged with the surroundings. Is this heat absorbed or rejected by the system? 1.2 Calculate the entropy change of the exhaust gas. 1.3 As a young and ambitious chemical engineer, you seek ways to improve the process. What is the maximum amount of work that you could extract from this system? Assume that the inlet and outlet conditions of the exhaust gas remain the same.
Additional data: Assume the surroundings to be at the constant temperature of 298 K and the exhaust gas to be ideal with CP = 29.3 J/mol.K
Chapter 14 Solutions
INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
Ch. 14 - Prob. 14.1PCh. 14 - A system initially containing 2 mol C2H4 and 3 mol...Ch. 14 - A system formed initially of 2 mol CO2 , 5 mol H2...Ch. 14 - Consider the water-gas-shift reaction:...Ch. 14 - Rework Prob. 14.4 for a temperature of: (a) HOOK:...Ch. 14 - Use the method of equilibrium constants to verify...Ch. 14 - Prob. 14.7PCh. 14 - For ideal gases, exact mathematical expressions...Ch. 14 - For the ammonia synthesis reaction written:...Ch. 14 - Peter. Paul, and Mary, members of a thermodynamics...
Ch. 14 - The following reaction reaches equilibrium at...Ch. 14 - The following reaction reaches equilibrium at...Ch. 14 - The following reaction reaches equilibrium at...Ch. 14 - The following reaction, hydrogenation of styrene...Ch. 14 - The gas stream from a sulfur burner is composed of...Ch. 14 - Prob. 14.16PCh. 14 - Ethylene is produced by the dehydrogenation of...Ch. 14 - The production of 1,3-butadiene can be carried out...Ch. 14 - The production of 1,3-butadiene can be carried out...Ch. 14 - For the ammonia synthesis reaction, 12N2g+32H2NH3g...Ch. 14 - Prob. 14.21PCh. 14 - Prob. 14.22PCh. 14 - Ammonium chloride NH4Cls decomposes upon heating...Ch. 14 - A chemically reactive system contains the...Ch. 14 - The relative compositions of the pollutants NO and...Ch. 14 - Carbon black is produced by the decomposition of...Ch. 14 - Consider the reactions 12N2g+12O2gNOg12N2g+O2gNO2g...Ch. 14 - Oil refineries often have both H2S and SO2 to...Ch. 14 - Species N2O4 and NO2 as gases come to equilibrium...Ch. 14 - The following isomerization reaction occurs in the...Ch. 14 - Prob. 14.32PCh. 14 - The feed gas to a methanol synthesis reactor is...Ch. 14 - Prob. 14.34PCh. 14 - Consider the gas-phase isomerization reaction: ....Ch. 14 - A low-pressure, gas-phase isomerization reaction,...Ch. 14 - Set up the equations required for solution of Ex....Ch. 14 - Reaction-equilibrium calculations may be useful...Ch. 14 - Ethylene oxide as a vapor and water as liquid,...Ch. 14 - In chemical-reaction engineering, special measures...Ch. 14 - The following problems involving chemical-reaction...Ch. 14 - The following is an industrial-safety rule of...Ch. 14 - Prob. 14.43PCh. 14 - The standard heat of reaction A/f3 for gas-phase...Ch. 14 - Ethanol is produced from ethylene via the...Ch. 14 - A good source for formation data for compounds is...Ch. 14 - Reagent-grade, liquid-phase chemicals often...Ch. 14 - Cracking propane is a route to light olefin...Ch. 14 - Equilibrium at 425 K and 15 bar is established for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Latihan mandiri Reaktor fluidisasi menggunakan katalis padat dengan diameter partikel 0,25 mm, rapat massa 1,50 g/ml, sperisitas 0,90. Pada kondisi unggun diam, porositas 0,35, tinggi unggun 2 m. Gas masuk dari bagian bawah reaktor pada suhu 600°C pada viskositas 0,025 CP serta rapat massa 0,22 lb/cuft. Pada fluidisasi minimum, porositas tercapai pada 0,45. Hitung Hitung a. Laju alir semu minimum (VM) gas masuk kolom fluidisasi ! b. Tinggi unggun jika Vo = 2 VM c. Pressure drop pada kondisi Vo = 2,5 VM < 1 m = 3,28084 ft 1 g/ml = 62,43 lbm/ft³ 1 cp gc = 6,7197 × 10-4 lbm/ft.s = 32,174 ft/s² =arrow_forwarddetermine the binary diffusion coefficient of CO2 in air at a) 200 K and 1 atm b)400K and 0.5atm c)600 K and 5 atmarrow_forwardUsing Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [V should be 196 kmol/hr when solved]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?arrow_forward
- A 40 mol % ethanol 60 mol % water mixture at 60 °C and 1 atm is heated. Using Figure 2-3 answer the following:a. At what temperature does the mixture first begin to boil? What is the composition of the first bubble of vapor?b. At what temperature would it stop boiling (assume no material is removed)? What is the composition of the last droplet of liquid?c. At 82 °C, what fraction is liquid? [should be 0.6]d. When 90% has been vaporized, what is the temperature, and what are the liquid and vapor compositions?arrow_forwardUsing Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [196 kmol/hr]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?arrow_forwardConsidering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. do not use chatgpt please, i did not understan from it thats why i paid for bartlebyarrow_forward
- Considering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. please do not use chatgpt, i did not understand from it that is why i paid for this.arrow_forwardWe have a feed that is a binary mixture of methanol and water (55.0 mol% methanol) that is sent to a system of two flash drums hooked together. The vapor from the first drum is cooled, which partially condenses the vapor, and then is fed to the second flash drum. Both drums operate at a pressure of 1.0 atm and are adiabatic. The feed rate to the first drum is 1000.0 kmol/h. We desire a liquid product from the first drum that is 30.0 mol% methanol (x1 = 0.300). The second drum operates at a fraction vaporized of (V/F)2 = 0.250. The equilibrium data are in Table 2-8. Find the following for the first drum: y1, T1, (V/F)1, and vapor flow rate V1. Find the following for the second drum: y2, x2, T2, and vapor flow rate V2.arrow_forwardShow that the overall mass transfer coefficient, Ky, can be related to the individual gas and liquid film mass transfer coefficients, ky and kx, respectively, by the following equation: 1 K y = 1 + m kk y xarrow_forward
- Use the approach given to solvearrow_forwardAntoine constants for vapor pressure for n-pentane and n-hexane are listed in Table 2-3. a. Predict the vapor pressure at 0.0°C for pure n-pentane. b. Predict the boiling point of pure n-pentane at 3.0 atm pressure. c. Predict the boiling pressure if pure n-pentane is boiling at 0.0°C. d. At a pressure of 500.0 mm Hg and temperature of 30.0°C, predict the K values for n-pentane and n-hexane using Raoult’s law. e. If T = 30.0°C and p = 500.0 mm Hg, determine the mole fractions in the liquid and vapor phases of an equilibrium mixture of n-pentane and n-hexane. f. 1.0 moles of a mixture that is 75.0 mol% n-pentane and 25.0 mol% n-hexane is placed in a closed chamber. The pressure is adjusted to 500.0 mm Hg, and the temperature to 30.0°C. The vapor and liquid mole fractions were found in part e. How many moles of liquid and moles of vapor are there at equilibrium? g. If 1.0 mol/min of a mixture that is 75.0 mol% n-pentane and 25.0 mol% n-hexane is fed continuously to an equilibrium flash…arrow_forwardA 40 mol % ethanol 60 mol % water mixture at 60 °C and 1 atm is heated. Using Figure 2-3 answer the following:a. At what temperature does the mixture first begin to boil? What is the composition of the first bubble of vapor?b. At what temperature would it stop boiling (assume no material is removed)? What is the composition of the last droplet of liquid?c. At 82 °C, what fraction is liquid? d. When 90% has been vaporized, what is the temperature, and what are the liquid and vapor compositions?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY
Chemical Equilibrium Constant K - Ice Tables - Kp and Kc; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=J4WJCYpTYj8;License: Standard Youtube License