(a)
Interpretation:
If there is any advantage in processing the reaction at pressure above
Concept introduction:
For a single reaction system, the final moles of each of the present components can be estimated by the equation:
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as:
Where,
(a)
Answer to Problem 14.32P
There is no advantage in processing the reaction at pressure above
Explanation of Solution
Given information:
By the reaction of steam with “water gas”, hydrogen gas is produced. The reaction by which the steam is passed over a catalyst to convert
The equilibrium conditions given for this reaction is
For the given reaction to produce hydrogen gas, let the extent of the reaction be
The overall stoichiometric coefficient for this reaction is
The individual stoichiometric coefficients for all the components in this reaction are
The initial and final pressure of the system is taken as
Now, use equation (3) for the equilibrium constant of this reaction and simplify the expression as
Since the expression for the equilibrium constant for this reaction does not depend on the pressure of the system, carrying the reaction above
(b)
Interpretation:
The effect of increase in the equilibrium temperature for the given reaction on the conversion of
Concept introduction:
According to the Le’ Chatelier’s principle, if a reaction is subject to any change at its equilibrium, then the reaction tends to shift its equilibrium in the direction so as to undo the effect of that change on its equilibrium.
(b)
Answer to Problem 14.32P
The increase in the equilibrium temperature of the reaction does not increase the conversion of
Explanation of Solution
Given information:
By the reaction of steam with “water gas”, hydrogen gas is produced. The reaction by which the steam is passed over a catalyst to convert
The equilibrium conditions given for this reaction is
The standard heat of reaction and Gibb’s free energy for this reaction is
Since the reaction is exothermic, the heat released during the reaction acts as one of the products of the reaction.
Increasing the equilibrium temperature of the reaction increases the heat released of the system. So, according to the Le’ Chatelier’s principle, to undo the effect of the increase in the products, the reaction shifts to the left toward the reactants. Thus, there are more reactants present at the equilibrium and the conversion of
(c)
Interpretation:
The molar ratio of steam to water gas for the given reaction is to be determined.
Concept introduction:
For a single reaction system, the final moles of each of the present components can be estimated by the equation:
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as:
Where,
Gibb’s free energy in terms of equilibrium constant is written as:
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(c)
Answer to Problem 14.32P
The molar ratio of steam to water gas fed for the given reaction is
Explanation of Solution
Given information:
By the reaction of steam with “water gas”, hydrogen gas is produced. The reaction by which the steam is passed over a catalyst to convert
The equilibrium conditions given for this reaction is
After cooling the products to
From Table C.4 the standard heat of reaction and Gibb’s free energy for this reaction is:
From Table C.1 the coefficients for the heat capacity of the component gases are given as:
Substance | | | | |
| | | | |
| | | | |
| | | | |
| | | | |
Now, use equations set (6) to evaluate the values of
Now, use equation (5) along with the above calculated values to get the value of
Use this calculated value of
For the given reaction to produce hydrogen gas, let the extent of the reaction be
The overall stoichiometric coefficient for this reaction is,
The individual stoichiometric coefficients for all the components in this reaction are:
Using equation (1), write the expressions for final moles of all the components present in the products as gases. All of the unreacted
According to the given conditions on the product gases,
Let the mole of steam
Now, the moles of all the species in the products will be
Total moles of the products will be
Using equation (2) and substituting the value of
Now, use equation (3) and the calculated value of the equilibrium constant and
Therefore, the molar ratio of steam to water gas fed for the given reaction is
(d)
Interpretation:
The danger of formation of solid carbon by the given side reaction at equilibrium conditions is to be determined.
Concept introduction:
For a single reaction system, the final moles of each of the components present, can be estimated by the equation:
Here,
Mole fraction
Here,
Equilibrium constant of this reaction from equation 14.28 can be written as
Where,
Gibb’s free energy in terms of equilibrium constant is written as
Also, Gibbs free energy is calculated using heat of reaction from the equation given as
Here,
Where,
(d)
Answer to Problem 14.32P
There is no danger of formation of solid carbon by the given side reaction at equilibrium conditions.
Explanation of Solution
Given information:
By the reaction of steam with “water gas”, hydrogen gas is produced. The reaction by which the steam is passed over a catalyst to convert
The equilibrium conditions given for this reaction is
At this equilibrium condition, the side reaction taking place to form carbon is
From Table C.4 the standard heat of reaction and Gibb’s free energy for the formation of carbon is
From Table C.1 the coefficients for the heat capacity of the component gases are given as
Substance | | | | |
| | | | |
| | | | |
| | | | |
Now, use equations set (6) to evaluate the values of
Now, use equation (5) along with the above calculated values to get the value of
Use this calculated value of
This is the equilibrium constant for this reaction and if the actual value of this constant is greater than the equilibrium value then the reaction tries to shift to the left and reducing the formation of carbon.
Calculate the actual value of this constant as
For the given reaction to produce carbon, let the extent of the reaction be
The overall stoichiometric coefficient for this reaction is (for gases only)
The individual stoichiometric coefficients for all the gaseous components in this reaction are
Use equation (3) which is applicable only for gaseous species, such that,
From part (c), the actual value of the mole fraction of
Calculate the ratio of the actual constant as:
As the actual value of
Want to see more full solutions like this?
Chapter 14 Solutions
INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
- A process for the microbial synthesis of 1,3-propanediol ( 3 8 2 C H O ) uses an anaerobicfermenter with a selected strain of K. pneumoniae to convert glycerol ( 3 8 3 C H O ) to 1,3-propanediol and acetic acid ( 2 4 2 C H O ). All other byproducts are of negligible concentration.The fermentation and cell growth equation can be written:3 8 3 3 4 7 2 3 8 2 2 4 2 2 2 68 3 3 49 15 15 40 C H O NH C H O N C H O C H O CO H O + → + + + +The continuous fermentation process is set up at 37°C and atmospheric pressure.Anaerobic conditions are maintained by sparging the fermentation broth with N2 at aflowrate of 500 litres per minute. The medium, containing ammonia, is fed at 500 kg perhour, and has a composition of 14% (w/w) glycerol. Suppression of the side reactions isachieved by excess glycerol, so the liquid product contains 3% (w/w) unreacted glycerol.2a. Draw a process diagram. List all your assumptions necessary to write a materialbalance.(5 marks)2b. List your unknowns.(3 marks)2c. Write…arrow_forward8-4. A pressurized-water reactor generates 70 Mw(t) in the core. The coolant-moderator mass-flow rate is 107 lbm/hr. It enters the core at 490°F. Estimate the effective thermal- neutron fission cross section in the core.arrow_forwardQ/ 8-17 cylindrical reactor core is 4 ft in diameter and 4.8 ft height. The maximum neutron flux is 1013. The extrapolation length are 0.186 ft in the radial direction and 0.3 ft in the axial direction. The fuel is 20% enriched UO2.0= 500 b. Determine (a) The neutron flux at the upper and lower rims, and (b) the maximum heat generated in the fuel in [MeV/s cm³] and [Btu/hr ft³).arrow_forward
- LATIHAN 8.5-4. Concentration of NaOH Solution in Triple-Effect Evaporator. A forced-circulation triple-effect evaporator using forward feed is to be used to concentrate a 10 wt % NaOH solution entering at 37.8°C to 50%. The steam used enters at 58.6 kPa gage. The absolute pressure in the vapor space of the third effect is 6.76 kPa. The feed rate is 13 608 kg/h. The heat-transfer coefficients are U₁ = 6246, U2 = 3407, and U3 = 2271 W/m² K. All effects have the same area. Calculate the surface area and steam consumption. 8.5-1. Boiling Points in a Triple-Effect Evaporator. A solution with a negligible boiling- point rise is being evaporated in a triple-effect evaporator using saturated steam at 121.1°C (394.3 K). The pressure in the vapor of the last effect is 25.6 kPa abs. The heat-transfer coefficients are U₁ = 2840, U₂ = 1988, and U₁ = 1420 W/m² K and the areas are equal. Estimate the boiling point in each of the evaporators.arrow_forwardThe power generation unit in a plant uses a hot exhaust gas from another process to produce work. The gas enters at 10 bar and 350°C and exits at 1 bar and 40°C. The process produces a net amount of work equal to 4500 J/mol and it exchanges an unknown amount of heat with the surroundings. 1.1 Determine the amount of heat exchanged with the surroundings. Is this heat absorbed or rejected by the system? 1.2 Calculate the entropy change of the exhaust gas. 1.3 As a young and ambitious chemical engineer, you seek ways to improve the process. What is the maximum amount of work that you could extract from this system? Assume that the inlet and outlet conditions of the exhaust gas remain the same. Additional data: Assume the surroundings to be at the constant temperature of 298 K and the exhaust gas to be ideal with CP = 29.3 J/mol.Karrow_forwardLatihan mandiri Reaktor fluidisasi menggunakan katalis padat dengan diameter partikel 0,25 mm, rapat massa 1,50 g/ml, sperisitas 0,90. Pada kondisi unggun diam, porositas 0,35, tinggi unggun 2 m. Gas masuk dari bagian bawah reaktor pada suhu 600°C pada viskositas 0,025 CP serta rapat massa 0,22 lb/cuft. Pada fluidisasi minimum, porositas tercapai pada 0,45. Hitung Hitung a. Laju alir semu minimum (VM) gas masuk kolom fluidisasi ! b. Tinggi unggun jika Vo = 2 VM c. Pressure drop pada kondisi Vo = 2,5 VM < 1 m = 3,28084 ft 1 g/ml = 62,43 lbm/ft³ 1 cp gc = 6,7197 × 10-4 lbm/ft.s = 32,174 ft/s² =arrow_forward
- determine the binary diffusion coefficient of CO2 in air at a) 200 K and 1 atm b)400K and 0.5atm c)600 K and 5 atmarrow_forwardUsing Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [V should be 196 kmol/hr when solved]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?arrow_forwardA 40 mol % ethanol 60 mol % water mixture at 60 °C and 1 atm is heated. Using Figure 2-3 answer the following:a. At what temperature does the mixture first begin to boil? What is the composition of the first bubble of vapor?b. At what temperature would it stop boiling (assume no material is removed)? What is the composition of the last droplet of liquid?c. At 82 °C, what fraction is liquid? [should be 0.6]d. When 90% has been vaporized, what is the temperature, and what are the liquid and vapor compositions?arrow_forward
- Using Rachford-Rice in Excel, analyze flash distillation of the following feed stream at P = 1000 kPa and T = 30°C. Feed (1000 kmol/hr) is composed of ethane (25%), propane (30%), propylene (5%) and n-hexane (40%):a. What is the composition and flowrate of the vapor stream? [196 kmol/hr]b. What is the composition and flowrate of the liquid stream?c. What fraction of the n-hexane (feed) ends up in the vapor phase?d. What fraction of the ethane (feed) ends up in the liquid phase?arrow_forwardConsidering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. do not use chatgpt please, i did not understan from it thats why i paid for bartlebyarrow_forwardConsidering the molar flux as estimated by the Whitman two-film theory, show the relationship between the mass transfer coefficients based on concentration, and mol fraction gradients, kc and ky, respectively, is given by: ky = Ckc, where C is the total concentration. please do not use chatgpt, i did not understand from it that is why i paid for this.arrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The