Concept explainers
A 0.150-kg toy is undergoing
Want to see the full answer?
Check out a sample textbook solutionChapter 14 Solutions
University Physics with Modern Physics, Books a la Carte Edition; Modified MasteringPhysics with Pearson eText -- ValuePack Access Card -- for ... eText -- Valuepack Access Card (14th Edition)
Additional Science Textbook Solutions
Conceptual Physics (12th Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Life in the Universe (4th Edition)
College Physics (10th Edition)
University Physics Volume 1
Cosmic Perspective Fundamentals
- Which of the following statements is not true regarding a massspring system that moves with simple harmonic motion in the absence of friction? (a) The total energy of the system remains constant. (b) The energy of the system is continually transformed between kinetic and potential energy. (c) The total energy of the system is proportional to the square of the amplitude. (d) The potential energy stored in the system is greatest when the mass passes through the equilibrium position. (e) The velocity of the oscillating mass has its maximum value when the mass passes through the equilibrium position.arrow_forwardA blockspring system oscillates with an amplitude of 3.50 cm. The spring constant is 250 N/m and the mass of the block is 0.500 kg. Determine (a) the mechanical energy of the system, (b) the maximum speed of the block, and (c) the maximum acceleration.arrow_forwardA 200-g block is attached to a horizontal spring and executes simple harmonic motion with a period of 0.250 s. The total energy of the system is 2.00 J. Find (a) the force constant of the spring and (b) the amplitude of the motion.arrow_forward
- A 500-kg object attached to a spring with a force constant of 8.00 N/m vibrates in simple harmonic motion with an amplitude of 10.0 cm. Calculate the maximum value of its (a) speed and (b) acceleration, (c) the speed and (d) the acceleration when the object is 6.00 cm from the equilibrium position, and (e) the time interval required for the object to move from x = 0 to x = 8.00 cm.arrow_forwardWhen a block of mass M, connected to the end of a spring of mass ms = 7.40 g and force constant k, is set into simple harmonic motion, the period of its motion is T=2M+(ms/3)k A two-part experiment is conducted with the use of blocks of various masses suspended vertically from the spring as shown in Figure P15.76. (a) Static extensions of 17.0, 29.3, 35.3, 41.3, 47.1, and 49.3 cm are measured for M values of 20.0, 40.0, 50.0, 60.0, 70.0, and 80.0 g, respectively. Construct a graph of Mg versus x and perform a linear least-squares fit to the data. (b) From the slope of your graph, determine a value for k for this spring. (c) The system is now set into simple harmonic motion, and periods are measured with a stopwatch. With M = 80.0 g, the total time interval required for ten oscillations is measured to be 13.41 s. The experiment is repeated with M values of 70.0, 60.0, 50.0, 40.0, and 20.0 g, with corresponding time intervals for ten oscillations of 12.52, 11.67, 10.67, 9.62, and 7.03 s. Make a table of these masses and times. (d) Compute the experimental value for T from each of these measurements. (e) Plot a graph of T2 versus M and (f) determine a value for k from the slope of the linear least-squares fit through the data points. (g) Compare this value of k with that obtained in part (b). (h) Obtain a value for ms from your graph and compare it with the given value of 7.40 g.arrow_forwardA 50.0-g object connected to a spring with a force constant of 35.0 N/m oscillates with an amplitude of 4.00 cm on a frictionless, horizontal surface. Find (a) the total energy of the system and (b) the speed of the object when its position is 1.00 cm. Find (c) the kinetic energy and (d) the potential energy when its position is 3.00 cm.arrow_forward
- A block of mass m is connected to two springs of force constants k1 and k2 in two ways as shown in Figure P12.56. In both cases, the block moves on a frictionless table after it is displaced from equilibrium and released. Show that in the two cases the block exhibits simple harmonic motion with periods (a) T=2m(k1+k2)k1k2 and (b) T=2mk1+k2 Figure P12.56arrow_forwardA spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.50 N is applied. A 0.500-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (a) What is the force constant of the spring? (b) What are the angular frequency , the frequency, and the period of the motion? (c) What is the total energy of the system? (d) What is the amplitude of the motion? (c) What are the maximum velocity and the maximum acceleration of the particle? (f) Determine the displacement x of the particle from the equilibrium position at t = 0.500 s. (g) Determine the velocity and acceleration of the particle when t = 0.500 s.arrow_forwardIf a car has a suspension system with a force constant of 5.00104 N/m , how much energy must the car’s shocks remove to dampen an oscillation starting with a maximum displacement of 0.0750 m?arrow_forward
- A spherical bob of mass m and radius R is suspended from a fixed point by a rigid rod of negligible mass whose length from the point of support to the center of the bob is L (Fig. P16.75). Find the period of small oscillation. N The frequency of a physical pendulum comprising a nonuniform rod of mass 1.25 kg pivoted at one end is observed to be 0.667 Hz. The center of mass of the rod is 40.0 cm below the pivot point. What is the rotational inertia of the pendulum around its pivot point?arrow_forwardReview. A system consists of a spring with force constant k = 1 250 N/m, length L = 1.50 m, and an object of mass m = 5.00 kg attached to the end (Fig. P15.49). The object is placed at the level of the point of attachment with the spring unstretched, at position yi = L, and then it is released so that it swings like a pendulum. (a) Find the y position of the object at the lowest point. (b) Will the pendulums period be greater or less than the period of a simple pendulum with the same mass m and length L? Explain. Figure PI 5.49arrow_forwardUse the data in Table P16.59 for a block of mass m = 0.250 kg and assume friction is negligible. a. Write an expression for the force FH exerted by the spring on the block. b. Sketch FH versus t.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning