Concept explainers
A short dipole-carrying current I0 cos
(a)
A unit vector of electric field that shows the instantaneous direction of E for a short dipole.
Answer to Problem 14.1P
A unit vector of electric field that shows the instantaneous direction of E for a short dipole is
Explanation of Solution
Given:
k =1 rad/m
r = 2 m
Concept Used:
In spherical co-ordinate component of electric field is given by,
Calculation:
Plugging r =2 in above equations
Therefore,
Vector
Normalize above vector by dividing their magnitude.
Converting above equation in real instantaneous form.
Hence,
at t =0
Conclusion:
Therefore, the unit vector of electric field that shows the instantaneous direction of E for a short dipole is
(b)
The fraction of total average power is radiated in the belt
Answer to Problem 14.1P
The fraction of total average power is radiated in the given belt is 0.258.
Explanation of Solution
Given:
Concept Used:
Calculation:
Integrate above equation over the belt.
Evaluating above integral.
While total power is found by performing the same integral over
Therefore, the fraction of the total power is,
Conclusion:
Hence, the fraction of total power radiated to the given belt is 0.258.
Want to see more full solutions like this?
Chapter 14 Solutions
Engineering Electromagnetics
- 2. Triple Integral Applications 2a. First step Darw the volume of the solids in the first octant which bounded by xy-plane, yz-plane, plane x+y=4 and z. = x2+6. 2b. First draw the region bounded in between z = p and z=1, side by the cylinder r? ≤ 4, and in the first and second octant. Defermine its volume by using cylindrical coordinate system. 2c. Solving Using Spherical Coordinates 2c. First draw the volume of region which is bounded above by sphere of x? + y2 + 2? = 81 and below by cone z = x? + y? in the first octant. first step drawing second step calculation i need to cal by handarrow_forwardArmature reaction in an alternator primarily affects: A: rotor speed B: terminal voltage per phase C: frequency of armature current D: generated voltage per phasearrow_forwardAs the load of a 3-phase synchronous motor increases, the speed: a: Decreases b: Increases c: Does not change d: Increases then decreasesarrow_forward
- configuration to Q2: Design bio-electronics circuit using two inverting an operation-amplifier produce the output voltage Vo=10V1-8V2-0.8V3+12V4 choose RF-100KQ2. What's the type circuit.arrow_forwardconfiguration to Q2: Design bio-electronics circuit using two inverting an operation-amplifier produce the output voltage Vo-10V1-8V2-0.8V3+12V4 choose RF-100K2. What's the type circuit. [5] Marrow_forwardDon't use ai to answer I will report you answerarrow_forward
- The capacitor shown in the figure below is initially discharged. At t=0s the switch is moved to position B. Determine an expression for the voltage V across the capacitor for t≥0sarrow_forward4,57. Consider a discrete-time LTI system whose system function H(z) is given by Z H(z) Z- (a) Find the step response s[n]. 1 |z|> 2 (b) Find the output y[n] to the input x[n] = nu[n]. Ans. (a) s[n] = [2-()"]u[n] (b) y[n]=2[()" + n − 1]u[n] -arrow_forward4.56. Consider the system shown in Fig. 4-10. (a) Find the system function H(z). (b) Find the difference equation relating the output y[n] and input x[n]. Ans. (a) H(z) = + 7 -1 1+a,z+azz-2 (b) y[n]+a, y[n − 1]+a₂y[n-2]= box[n] + b,x[n − 1] + b₂x[n-2] x[n] a₂ b₂ Z-' b₁ bo Σ Σ y[n] Fig. 4-10arrow_forward
- Q1:For the network of figure, determine: 1-Av,AI,ZIN,Zo and Avs. if hie-1.8KQ, hre=2*10-4, hfe-120 and hoe-25μs. 2-S(Ico),S(VBE),S(ẞ) using T₁ as the temperature at which the parameter values are s and ẞ(T2) as 20% more than ẞ(T1). の 3-Determine the net change in Ic if a change in operating condition results in Ico increa 0.2μA to 10uA,VBE drops from 0.7 to 0.6 and ẞ increase 20%. 4-Find the change in Ic if the temperature increase from 20 to 80 [C] +16 3 kohm 220 kohm 20 MF Ikohm HOME HE 120 mv B4= www B 12 kohm 200 ohm Ikohm 20MF 10arrow_forward4.55. Consider the system shown in Fig. 4-9. Find the system function H(z) and its impulse response h[n]. 1 Ans. H(z) = 1- ½-1 h[n] = { } }) un u[n] x[n] + Σ Fig. 4-9 y[n]arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,