![Chemistry](https://www.bartleby.com/isbn_cover_images/9780073402734/9780073402734_largeCoverImage.gif)
Polyethylene is used in many items, including water pipes, bottles, electrical insulation, toys, and mailer envelopes. It is a
The R •� species (called a radical) reacts with an ethylene molecule (M) to generate another radical:
The reaction of
This step can be repeated with hundreds of monomer units. The propagation terminates when two radicals combine:
The initiator frequently used in the
This is a first-order reaction. The half-life of benzoyl peroxide at
![Check Mark](/static/check-mark.png)
Interpretation:
The rate constant, activation energy, and the rate law of reaction are to be determined.
Concept introduction:
At a given temperature, the concentration ratio of concentration of product to concentration of reactant in a chemical reaction is called rate constant. According to the Arrhenius equation, rate constant depends on temperature.
The amount of energy required for the reaction to form products by the formation of an activated complex is called activation energy.
Half-life: The time required for the concentration of a reactant to decrease to one-half its initial value. This period of time is called the half-life of the reaction, written as
The relation between rate constant k and half-life is
Answer to Problem 135AP
Solution:
a)
b)
c)
d) A higher rate of propagation step and a lower rate of termination step.
Explanation of Solution
Given information: The initiation step is as follows:
The reaction of
The propagation terminates when two radicals combine as follows:
a) The rate constant
The relation between the rate constant and half-life is given as follows:
The value of
is given as
The rate constant for the reaction is
b) The activation energy
The half-life of benzoyl peroxide is
The rate constant for the reaction at
There are two values of rate constants
Here,
Substitute the values
The activation energy for the reaction is
c) The rate laws to be written for elementary steps in the preceding polymerization process and identify the reactant, product, and intermediates.
The rate law for the initiation step is as follows:
The rate law for the propagation step is as follows:
The rate law for the propagation step is as follows:
The ethylene monomers are the reactant molecules, and polyethylene is a product in the reaction mechanism. The intermediates are formed in the early elementary step and consumed in the next step. So, the intermediates are radicals of
d) The condition that favor the growth of long, high-molar-mass polyethylenes.
A higher rate of propagation and a lower rate of termination are favoured when the growth of long polymers take place. In the propagation step, the rate law is dependent on the concentration of monomer. If the concentration of ethylene is increased, the propagation rate also increases.
The concentration of radical fragments
Want to see more full solutions like this?
Chapter 14 Solutions
Chemistry
- Question 7 (10 points) Identify the carboxylic acid present in each of the following items and draw their structures: Food Vinegar Oranges Yogurt Sour Milk Pickles Acid Structure Paragraph ✓ BI UAE 0118 + v Task: 1. Identify the carboxylic acid 2. Provide Name 3. Draw structure 4. Take a picture of your table and insert Add a File Record Audio Record Video 11.arrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 IZ IN Molecule 4 Molecule 5 ZI none of the above ☐ Molecule 3 Х IN www Molecule 6 NH Garrow_forwardHighlight each chiral center in the following molecule. If there are none, then check the box under the drawing area. There are no chiral centers. Cl Cl Highlightarrow_forward
- A student proposes the following two-step synthesis of an ether from an alcohol A: 1. strong base A 2. R Is the student's proposed synthesis likely to work? If you said the proposed synthesis would work, enter the chemical formula or common abbreviation for an appropriate strong base to use in Step 1: If you said the synthesis would work, draw the structure of an alcohol A, and the structure of the additional reagent R needed in Step 2, in the drawing area below. If there's more than one reasonable choice for a good reaction yield, you can draw any of them. ☐ Click and drag to start drawing a structure. Yes No ロ→ロ 0|0 G Х D : ☐ பarrow_forwardटे Predict the major products of this organic reaction. Be sure to use wedge and dash bonds when necessary, for example to distinguish between different major products. ☐ ☐ : ☐ + NaOH HO 2 Click and drag to start drawing a structure.arrow_forwardShown below are five NMR spectra for five different C6H10O2 compounds. For each spectrum, draw the structure of the compound, and assign the spectrum by labeling H's in your structure (or in a second drawing of the structure) with the chemical shifts of the corresponding signals (which can be estimated to nearest 0.1 ppm). IR information is also provided. As a reminder, a peak near 1700 cm-1 is consistent with the presence of a carbonyl (C=O), and a peak near 3300 cm-1 is consistent with the presence of an O–H. Extra information: For C6H10O2 , there must be either 2 double bonds, or 1 triple bond, or two rings to account for the unsaturation. There is no two rings for this problem. A strong band was observed in the IR at 1717 cm-1arrow_forward
- Predict the major products of the organic reaction below. : ☐ + Х ك OH 1. NaH 2. CH₂Br Click and drag to start drawing a structure.arrow_forwardNG NC 15Show all the steps you would use to synthesize the following products shown below using benzene and any organic reagent 4 carbons or less as your starting material in addition to any inorganic reagents that you have learned. NO 2 NC SO3H NO2 OHarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199023/9781285199023_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)