Daylight function for 40° N Verify that the function D ( t ) = 2.8 sin ( 2 π 365 ( t − 81 ) ) + 12 has the following properties, where t is measured in days and D is the number of hours between sunrise and sunset. a. It has a period of 365 days. b. Its maximum and minimum values are 14.8 and 9.2, respectively, which occur approximately at t = 172 and t = 355, respectively (corresponding to the solstices). c. D (81) = 12 and D (264) ≈ 12 (corresponding to the equinoxes).
Daylight function for 40° N Verify that the function D ( t ) = 2.8 sin ( 2 π 365 ( t − 81 ) ) + 12 has the following properties, where t is measured in days and D is the number of hours between sunrise and sunset. a. It has a period of 365 days. b. Its maximum and minimum values are 14.8 and 9.2, respectively, which occur approximately at t = 172 and t = 355, respectively (corresponding to the solstices). c. D (81) = 12 and D (264) ≈ 12 (corresponding to the equinoxes).
Daylight function for 40° N Verify that the function
D
(
t
)
=
2.8
sin
(
2
π
365
(
t
−
81
)
)
+
12
has the following properties, where t is measured in days and D is the number of hours between sunrise and sunset.
a. It has a period of 365 days.
b. Its maximum and minimum values are 14.8 and 9.2, respectively, which occur approximately at t = 172 and t = 355, respectively (corresponding to the solstices).
c.D(81) = 12 and D(264) ≈ 12 (corresponding to the equinoxes).
1. Sketch the following piecewise function on the graph. (5 points)
x<-1
3
x²
-1≤ x ≤2
f(x) =
=
1
४
| N
2
x ≥ 2
-4-
3
2
-1-
-4
-3
-2
-1
0
1
-1-
--2-
-3-
-4-
-N
2
3
4
2. Let f(x) = 2x² + 6. Find and completely simplify the rate of change on the interval [3,3+h].
(5 points)
(x)=2x-x2
2
a=2, b = 1/2, C=0
b) Vertex v
F(x)=ax 2 + bx + c
x=
Za
V=2.0L
YEF(- =) = 4
b
(글)
JANUARY 17, 2025
WORKSHEET 1
Solve the following four problems on a separate sheet. Fully justify your answers to
MATH 122
ล
T
earn full credit.
1. Let f(x) = 2x-
1x2
2
(a) Rewrite this quadratic function in standard form: f(x) = ax² + bx + c
and indicate the values of the coefficients: a, b and c.
(b) Find the vertex V, focus F, focal width, directrix D, and the axis of
symmetry for the graph of y = f(x).
(c) Plot a graph of y = f(x) and indicate all quantities found in part (b)
on your graph.
(d) Specify the domain and range of the function f.
OUR
2. Let g(x) = f(x) u(x) where f is the quadratic function from problem 1
and u is the unit step function:
u(x) = { 0
1 if x ≥0
0 if x<0
y = u(x)
0
(a) Write a piecewise formula for the function g.
(b) Sketch a graph of y = g(x).
(c) Indicate the domain and range of the function g.
X
фирм
where u is the unit step function defined in problem 2.
3. Let…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.