World record free fall On October 14, 2012, Felix Baumgartner stepped off a balloon capsule at an altitude of 127,852.4 feet and began his free fall. It is claimed that Felix reached the speed of sound 34 seconds into his fall at an altitude of 109,731 feet and that he continued to fall at supersonic speed for 30 seconds until he was at an altitude of 75,330.4 feet. Let f ( t ) equal the distance that Felix had fallen t seconds after leaving his capsule. Calculate f (0), f (34), f (64), and his average supersonic speed f ( 64 ) − f ( 34 ) 64 − 34 (in ft/s) over the time interval [34, 64] ( Source http://www.redbullstratos.com )
World record free fall On October 14, 2012, Felix Baumgartner stepped off a balloon capsule at an altitude of 127,852.4 feet and began his free fall. It is claimed that Felix reached the speed of sound 34 seconds into his fall at an altitude of 109,731 feet and that he continued to fall at supersonic speed for 30 seconds until he was at an altitude of 75,330.4 feet. Let f ( t ) equal the distance that Felix had fallen t seconds after leaving his capsule. Calculate f (0), f (34), f (64), and his average supersonic speed f ( 64 ) − f ( 34 ) 64 − 34 (in ft/s) over the time interval [34, 64] ( Source http://www.redbullstratos.com )
World record free fall On October 14, 2012, Felix Baumgartner stepped off a balloon capsule at an altitude of 127,852.4 feet and began his free fall. It is claimed that Felix reached the speed of sound 34 seconds into his fall at an altitude of 109,731 feet and that he continued to fall at supersonic speed for 30 seconds until he was at an altitude of 75,330.4 feet. Let f(t) equal the distance that Felix had fallen t seconds after leaving his capsule. Calculate f(0), f(34), f(64), and his average supersonic speed
f
(
64
)
−
f
(
34
)
64
−
34
(in ft/s) over the time interval [34, 64] (Sourcehttp://www.redbullstratos.com)
Find a plane containing the point (3, -3, 1) and the line of intersection of the planes 2x + 3y - 3z = 14
and -3x - y + z = −21.
The equation of the plane is:
Determine whether the lines
L₁ : F(t) = (−2, 3, −1)t + (0,2,-3) and
L2 : ƒ(s) = (2, −3, 1)s + (−10, 17, -8)
intersect. If they do, find the point of intersection.
● They intersect at the point
They are skew lines
They are parallel or equal
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY