Calculus
6th Edition
ISBN: 9781465208880
Author: SMITH KARL J, STRAUSS MONTY J, TODA MAGDALENA DANIELE
Publisher: Kendall Hunt Publishing
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.7, Problem 5PS
To determine
To verify: The divergence theorem for the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
True or False?The Vector functions r 1 = ti + t2 j, 0 ≤ t ≤ 1 , and r 2 =(1 — t )i+(1 — t2 )j, 0 ≤ t ≤ 1 , define the same curve
both do otherwise not
Which of the following vector fields matches the plot below?
1
-2
-1
1
-1
-2
Flr.9) -
1
F(x,y) = 5i
1
|
F(x, y) =
1
xi + 7I
Fir.9) -
1
F(z,y) = ;i + =yj
9.
1
F(x, y) :
1
2.
2.
112
Chapter 13 Solutions
Calculus
Ch. 13.1 - Prob. 1PSCh. 13.1 - Prob. 2PSCh. 13.1 - Prob. 3PSCh. 13.1 - Prob. 4PSCh. 13.1 - Prob. 5PSCh. 13.1 - Prob. 6PSCh. 13.1 - Prob. 7PSCh. 13.1 - Prob. 8PSCh. 13.1 - Prob. 9PSCh. 13.1 - Prob. 10PS
Ch. 13.1 - Prob. 11PSCh. 13.1 - Prob. 12PSCh. 13.1 - Prob. 13PSCh. 13.1 - Prob. 14PSCh. 13.1 - Prob. 15PSCh. 13.1 - Prob. 16PSCh. 13.1 - Prob. 17PSCh. 13.1 - Prob. 18PSCh. 13.1 - Prob. 19PSCh. 13.1 - Prob. 20PSCh. 13.1 - Prob. 21PSCh. 13.1 - Prob. 22PSCh. 13.1 - Prob. 23PSCh. 13.1 - Prob. 24PSCh. 13.1 - Prob. 25PSCh. 13.1 - Prob. 26PSCh. 13.1 - Prob. 27PSCh. 13.1 - Prob. 28PSCh. 13.1 - Prob. 29PSCh. 13.1 - Prob. 30PSCh. 13.1 - Prob. 31PSCh. 13.1 - Prob. 32PSCh. 13.1 - Prob. 33PSCh. 13.1 - Prob. 34PSCh. 13.1 - Prob. 35PSCh. 13.1 - Prob. 36PSCh. 13.1 - Prob. 37PSCh. 13.1 - Prob. 38PSCh. 13.1 - Prob. 39PSCh. 13.1 - Prob. 40PSCh. 13.1 - Prob. 41PSCh. 13.1 - Prob. 42PSCh. 13.1 - Prob. 43PSCh. 13.1 - Prob. 44PSCh. 13.1 - Prob. 45PSCh. 13.1 - Prob. 46PSCh. 13.1 - Prob. 47PSCh. 13.1 - Prob. 48PSCh. 13.1 - Prob. 49PSCh. 13.1 - Prob. 50PSCh. 13.1 - Prob. 51PSCh. 13.1 - Prob. 52PSCh. 13.1 - Prob. 53PSCh. 13.1 - Prob. 54PSCh. 13.1 - Prob. 55PSCh. 13.1 - Prob. 56PSCh. 13.1 - Prob. 57PSCh. 13.1 - Prob. 58PSCh. 13.1 - Prob. 59PSCh. 13.1 - Prob. 60PSCh. 13.2 - Prob. 1PSCh. 13.2 - Prob. 2PSCh. 13.2 - Prob. 3PSCh. 13.2 - Prob. 4PSCh. 13.2 - Prob. 5PSCh. 13.2 - Prob. 6PSCh. 13.2 - Prob. 7PSCh. 13.2 - Prob. 8PSCh. 13.2 - Prob. 9PSCh. 13.2 - Prob. 10PSCh. 13.2 - Prob. 11PSCh. 13.2 - Prob. 12PSCh. 13.2 - Prob. 13PSCh. 13.2 - Prob. 14PSCh. 13.2 - Prob. 15PSCh. 13.2 - Prob. 16PSCh. 13.2 - Prob. 17PSCh. 13.2 - Prob. 18PSCh. 13.2 - Prob. 19PSCh. 13.2 - Prob. 20PSCh. 13.2 - Prob. 21PSCh. 13.2 - Prob. 22PSCh. 13.2 - Prob. 23PSCh. 13.2 - Prob. 24PSCh. 13.2 - Prob. 25PSCh. 13.2 - Prob. 26PSCh. 13.2 - Prob. 27PSCh. 13.2 - Prob. 28PSCh. 13.2 - Prob. 29PSCh. 13.2 - Prob. 30PSCh. 13.2 - Prob. 31PSCh. 13.2 - Prob. 32PSCh. 13.2 - Prob. 33PSCh. 13.2 - Prob. 34PSCh. 13.2 - Prob. 35PSCh. 13.2 - Prob. 36PSCh. 13.2 - Prob. 37PSCh. 13.2 - Prob. 38PSCh. 13.2 - Prob. 39PSCh. 13.2 - Prob. 40PSCh. 13.2 - Prob. 41PSCh. 13.2 - Prob. 42PSCh. 13.2 - Prob. 43PSCh. 13.2 - Prob. 44PSCh. 13.2 - Prob. 45PSCh. 13.2 - Prob. 46PSCh. 13.2 - Prob. 47PSCh. 13.2 - Prob. 48PSCh. 13.2 - Prob. 49PSCh. 13.2 - Prob. 50PSCh. 13.2 - Prob. 51PSCh. 13.2 - Prob. 52PSCh. 13.2 - Prob. 53PSCh. 13.2 - Prob. 54PSCh. 13.2 - Prob. 55PSCh. 13.2 - Prob. 56PSCh. 13.2 - Prob. 57PSCh. 13.2 - Prob. 58PSCh. 13.2 - Prob. 59PSCh. 13.2 - Prob. 60PSCh. 13.3 - Prob. 1PSCh. 13.3 - Prob. 2PSCh. 13.3 - Prob. 3PSCh. 13.3 - Prob. 4PSCh. 13.3 - Prob. 5PSCh. 13.3 - Prob. 6PSCh. 13.3 - Prob. 7PSCh. 13.3 - Prob. 8PSCh. 13.3 - Prob. 9PSCh. 13.3 - Prob. 10PSCh. 13.3 - Prob. 11PSCh. 13.3 - Prob. 12PSCh. 13.3 - Prob. 13PSCh. 13.3 - Prob. 14PSCh. 13.3 - Prob. 15PSCh. 13.3 - Prob. 16PSCh. 13.3 - Prob. 17PSCh. 13.3 - Prob. 18PSCh. 13.3 - Prob. 19PSCh. 13.3 - Prob. 20PSCh. 13.3 - Prob. 21PSCh. 13.3 - Prob. 22PSCh. 13.3 - Prob. 23PSCh. 13.3 - Prob. 24PSCh. 13.3 - Prob. 25PSCh. 13.3 - Prob. 26PSCh. 13.3 - Prob. 27PSCh. 13.3 - Prob. 28PSCh. 13.3 - Prob. 29PSCh. 13.3 - Prob. 30PSCh. 13.3 - Prob. 31PSCh. 13.3 - Prob. 32PSCh. 13.3 - Prob. 33PSCh. 13.3 - Prob. 34PSCh. 13.3 - Prob. 35PSCh. 13.3 - Prob. 36PSCh. 13.3 - Prob. 37PSCh. 13.3 - Prob. 38PSCh. 13.3 - Prob. 39PSCh. 13.3 - Prob. 40PSCh. 13.3 - Prob. 41PSCh. 13.3 - Prob. 42PSCh. 13.3 - Prob. 43PSCh. 13.3 - Prob. 44PSCh. 13.3 - Prob. 45PSCh. 13.3 - Prob. 46PSCh. 13.3 - Prob. 47PSCh. 13.3 - Prob. 48PSCh. 13.3 - Prob. 49PSCh. 13.3 - Prob. 50PSCh. 13.3 - Prob. 51PSCh. 13.3 - Prob. 52PSCh. 13.3 - Prob. 53PSCh. 13.3 - Prob. 54PSCh. 13.3 - Prob. 55PSCh. 13.3 - Prob. 56PSCh. 13.3 - Prob. 57PSCh. 13.3 - Prob. 58PSCh. 13.3 - Prob. 59PSCh. 13.3 - Prob. 60PSCh. 13.4 - Prob. 1PSCh. 13.4 - Prob. 2PSCh. 13.4 - Prob. 3PSCh. 13.4 - Prob. 4PSCh. 13.4 - Prob. 5PSCh. 13.4 - Prob. 6PSCh. 13.4 - Prob. 7PSCh. 13.4 - Prob. 8PSCh. 13.4 - Prob. 9PSCh. 13.4 - Prob. 10PSCh. 13.4 - Prob. 11PSCh. 13.4 - Prob. 12PSCh. 13.4 - Prob. 13PSCh. 13.4 - Prob. 14PSCh. 13.4 - Prob. 15PSCh. 13.4 - Prob. 16PSCh. 13.4 - Prob. 17PSCh. 13.4 - Prob. 18PSCh. 13.4 - Prob. 19PSCh. 13.4 - Prob. 20PSCh. 13.4 - Prob. 21PSCh. 13.4 - Prob. 22PSCh. 13.4 - Prob. 23PSCh. 13.4 - Prob. 24PSCh. 13.4 - Prob. 25PSCh. 13.4 - Prob. 26PSCh. 13.4 - Prob. 27PSCh. 13.4 - Prob. 28PSCh. 13.4 - Prob. 29PSCh. 13.4 - Prob. 30PSCh. 13.4 - Prob. 31PSCh. 13.4 - Prob. 32PSCh. 13.4 - Prob. 33PSCh. 13.4 - Prob. 34PSCh. 13.4 - Prob. 35PSCh. 13.4 - Prob. 36PSCh. 13.4 - Prob. 37PSCh. 13.4 - Prob. 38PSCh. 13.4 - Prob. 39PSCh. 13.4 - Prob. 40PSCh. 13.4 - Prob. 41PSCh. 13.4 - Prob. 42PSCh. 13.4 - Prob. 43PSCh. 13.4 - Prob. 44PSCh. 13.4 - Prob. 45PSCh. 13.4 - Prob. 46PSCh. 13.4 - Prob. 47PSCh. 13.4 - Prob. 48PSCh. 13.4 - Prob. 49PSCh. 13.4 - Prob. 50PSCh. 13.4 - Prob. 51PSCh. 13.4 - Prob. 52PSCh. 13.4 - Prob. 53PSCh. 13.4 - Prob. 54PSCh. 13.4 - Prob. 55PSCh. 13.4 - Prob. 56PSCh. 13.4 - Prob. 57PSCh. 13.4 - Prob. 58PSCh. 13.4 - Prob. 59PSCh. 13.4 - Prob. 60PSCh. 13.5 - Prob. 1PSCh. 13.5 - Prob. 2PSCh. 13.5 - Prob. 3PSCh. 13.5 - Prob. 4PSCh. 13.5 - Prob. 5PSCh. 13.5 - Prob. 6PSCh. 13.5 - Prob. 7PSCh. 13.5 - Prob. 8PSCh. 13.5 - Prob. 9PSCh. 13.5 - Prob. 10PSCh. 13.5 - Prob. 11PSCh. 13.5 - Prob. 12PSCh. 13.5 - Prob. 13PSCh. 13.5 - Prob. 14PSCh. 13.5 - Prob. 15PSCh. 13.5 - Prob. 16PSCh. 13.5 - Prob. 17PSCh. 13.5 - Prob. 18PSCh. 13.5 - Prob. 19PSCh. 13.5 - Prob. 20PSCh. 13.5 - Prob. 21PSCh. 13.5 - Prob. 22PSCh. 13.5 - Prob. 23PSCh. 13.5 - Prob. 24PSCh. 13.5 - Prob. 25PSCh. 13.5 - Prob. 26PSCh. 13.5 - Prob. 27PSCh. 13.5 - Prob. 28PSCh. 13.5 - Prob. 29PSCh. 13.5 - Prob. 30PSCh. 13.5 - Prob. 31PSCh. 13.5 - Prob. 32PSCh. 13.5 - Prob. 33PSCh. 13.5 - Prob. 34PSCh. 13.5 - Prob. 35PSCh. 13.5 - Prob. 36PSCh. 13.5 - Prob. 37PSCh. 13.5 - Prob. 38PSCh. 13.5 - Prob. 39PSCh. 13.5 - Prob. 40PSCh. 13.5 - Prob. 41PSCh. 13.5 - Prob. 42PSCh. 13.5 - Prob. 43PSCh. 13.5 - Prob. 44PSCh. 13.5 - Prob. 45PSCh. 13.5 - Prob. 46PSCh. 13.5 - Prob. 47PSCh. 13.5 - Prob. 48PSCh. 13.5 - Prob. 49PSCh. 13.5 - Prob. 50PSCh. 13.5 - Prob. 51PSCh. 13.5 - Prob. 52PSCh. 13.5 - Prob. 53PSCh. 13.5 - Prob. 54PSCh. 13.5 - Prob. 55PSCh. 13.5 - Prob. 56PSCh. 13.5 - Prob. 57PSCh. 13.5 - Prob. 58PSCh. 13.5 - Prob. 59PSCh. 13.5 - Prob. 60PSCh. 13.6 - Prob. 1PSCh. 13.6 - Prob. 2PSCh. 13.6 - Prob. 3PSCh. 13.6 - Prob. 4PSCh. 13.6 - Prob. 5PSCh. 13.6 - Prob. 6PSCh. 13.6 - Prob. 7PSCh. 13.6 - Prob. 8PSCh. 13.6 - Prob. 9PSCh. 13.6 - Prob. 10PSCh. 13.6 - Prob. 11PSCh. 13.6 - Prob. 12PSCh. 13.6 - Prob. 13PSCh. 13.6 - Prob. 14PSCh. 13.6 - Prob. 15PSCh. 13.6 - Prob. 16PSCh. 13.6 - Prob. 17PSCh. 13.6 - Prob. 18PSCh. 13.6 - Prob. 19PSCh. 13.6 - Prob. 20PSCh. 13.6 - Prob. 21PSCh. 13.6 - Prob. 22PSCh. 13.6 - Prob. 23PSCh. 13.6 - Prob. 24PSCh. 13.6 - Prob. 25PSCh. 13.6 - Prob. 26PSCh. 13.6 - Prob. 27PSCh. 13.6 - Prob. 28PSCh. 13.6 - Prob. 29PSCh. 13.6 - Prob. 30PSCh. 13.6 - Prob. 31PSCh. 13.6 - Prob. 32PSCh. 13.6 - Prob. 33PSCh. 13.6 - Prob. 34PSCh. 13.6 - Prob. 35PSCh. 13.6 - Prob. 36PSCh. 13.6 - Prob. 37PSCh. 13.6 - Prob. 38PSCh. 13.6 - Prob. 39PSCh. 13.6 - Prob. 40PSCh. 13.6 - Prob. 41PSCh. 13.6 - Prob. 42PSCh. 13.6 - Prob. 43PSCh. 13.6 - Prob. 44PSCh. 13.6 - Prob. 45PSCh. 13.6 - Prob. 46PSCh. 13.6 - Prob. 47PSCh. 13.6 - Prob. 48PSCh. 13.6 - Prob. 49PSCh. 13.6 - Prob. 50PSCh. 13.6 - Prob. 51PSCh. 13.6 - Prob. 52PSCh. 13.6 - Prob. 53PSCh. 13.6 - Prob. 54PSCh. 13.6 - Prob. 55PSCh. 13.6 - Prob. 56PSCh. 13.6 - Prob. 57PSCh. 13.6 - Prob. 58PSCh. 13.6 - Prob. 59PSCh. 13.6 - Prob. 60PSCh. 13.7 - Prob. 1PSCh. 13.7 - Prob. 2PSCh. 13.7 - Prob. 3PSCh. 13.7 - Prob. 4PSCh. 13.7 - Prob. 5PSCh. 13.7 - Prob. 6PSCh. 13.7 - Prob. 7PSCh. 13.7 - Prob. 8PSCh. 13.7 - Prob. 9PSCh. 13.7 - Prob. 10PSCh. 13.7 - Prob. 11PSCh. 13.7 - Prob. 12PSCh. 13.7 - Prob. 13PSCh. 13.7 - Prob. 14PSCh. 13.7 - Prob. 15PSCh. 13.7 - Prob. 16PSCh. 13.7 - Prob. 17PSCh. 13.7 - Prob. 18PSCh. 13.7 - Prob. 19PSCh. 13.7 - Prob. 20PSCh. 13.7 - Prob. 21PSCh. 13.7 - Prob. 22PSCh. 13.7 - Prob. 23PSCh. 13.7 - Prob. 24PSCh. 13.7 - Prob. 25PSCh. 13.7 - Prob. 26PSCh. 13.7 - Prob. 27PSCh. 13.7 - Prob. 28PSCh. 13.7 - Prob. 29PSCh. 13.7 - Prob. 30PSCh. 13.7 - Prob. 31PSCh. 13.7 - Prob. 32PSCh. 13.7 - Prob. 33PSCh. 13.7 - Prob. 34PSCh. 13.7 - Prob. 35PSCh. 13.7 - Prob. 36PSCh. 13.7 - Prob. 37PSCh. 13.7 - Prob. 38PSCh. 13.7 - Prob. 39PSCh. 13.7 - Prob. 40PSCh. 13.7 - Prob. 41PSCh. 13.7 - Prob. 42PSCh. 13.7 - Prob. 43PSCh. 13.7 - Prob. 44PSCh. 13.7 - Prob. 45PSCh. 13.7 - Prob. 46PSCh. 13.7 - Prob. 47PSCh. 13.7 - Prob. 48PSCh. 13.7 - Prob. 49PSCh. 13.7 - Prob. 50PSCh. 13.7 - Prob. 51PSCh. 13.7 - Prob. 52PSCh. 13.7 - Prob. 53PSCh. 13.7 - Prob. 54PSCh. 13.7 - Prob. 55PSCh. 13.7 - Prob. 56PSCh. 13.7 - Prob. 57PSCh. 13.7 - Prob. 58PSCh. 13.7 - Prob. 59PSCh. 13.7 - Prob. 60PSCh. 13 - Prob. 1PECh. 13 - Prob. 2PECh. 13 - Prob. 3PECh. 13 - Prob. 4PECh. 13 - Prob. 5PECh. 13 - Prob. 6PECh. 13 - Prob. 7PECh. 13 - Prob. 8PECh. 13 - Prob. 9PECh. 13 - Prob. 10PECh. 13 - Prob. 11PECh. 13 - Prob. 12PECh. 13 - Prob. 13PECh. 13 - Prob. 14PECh. 13 - Prob. 15PECh. 13 - Prob. 16PECh. 13 - Prob. 17PECh. 13 - Prob. 18PECh. 13 - Prob. 19PECh. 13 - Prob. 20PECh. 13 - Prob. 21PECh. 13 - Prob. 22PECh. 13 - Prob. 23PECh. 13 - Prob. 24PECh. 13 - Prob. 25PECh. 13 - Prob. 26PECh. 13 - Prob. 27PECh. 13 - Prob. 28PECh. 13 - Prob. 29PECh. 13 - Prob. 30PECh. 13 - Prob. 1SPCh. 13 - Prob. 2SPCh. 13 - Prob. 3SPCh. 13 - Prob. 4SPCh. 13 - Prob. 5SPCh. 13 - Prob. 6SPCh. 13 - Prob. 7SPCh. 13 - Prob. 8SPCh. 13 - Prob. 9SPCh. 13 - Prob. 10SPCh. 13 - Prob. 11SPCh. 13 - Prob. 12SPCh. 13 - Prob. 13SPCh. 13 - Prob. 14SPCh. 13 - Prob. 15SPCh. 13 - Prob. 16SPCh. 13 - Prob. 17SPCh. 13 - Prob. 18SPCh. 13 - Prob. 19SPCh. 13 - Prob. 20SPCh. 13 - Prob. 21SPCh. 13 - Prob. 22SPCh. 13 - Prob. 23SPCh. 13 - Prob. 24SPCh. 13 - Prob. 25SPCh. 13 - Prob. 26SPCh. 13 - Prob. 27SPCh. 13 - Prob. 28SPCh. 13 - Prob. 29SPCh. 13 - Prob. 30SPCh. 13 - Prob. 31SPCh. 13 - Prob. 32SPCh. 13 - Prob. 33SPCh. 13 - Prob. 34SPCh. 13 - Prob. 35SPCh. 13 - Prob. 36SPCh. 13 - Prob. 37SPCh. 13 - Prob. 38SPCh. 13 - Prob. 39SPCh. 13 - Prob. 40SPCh. 13 - Prob. 41SPCh. 13 - Prob. 42SPCh. 13 - Prob. 43SPCh. 13 - Prob. 44SPCh. 13 - Prob. 45SPCh. 13 - Prob. 46SPCh. 13 - Prob. 47SPCh. 13 - Prob. 48SPCh. 13 - Prob. 49SPCh. 13 - Prob. 50SPCh. 13 - Prob. 51SPCh. 13 - Prob. 52SPCh. 13 - Prob. 53SPCh. 13 - Prob. 54SPCh. 13 - Prob. 55SPCh. 13 - Prob. 56SPCh. 13 - Prob. 57SPCh. 13 - Prob. 58SPCh. 13 - Prob. 59SPCh. 13 - Prob. 60SPCh. 13 - Prob. 61SPCh. 13 - Prob. 62SPCh. 13 - Prob. 63SPCh. 13 - Prob. 64SPCh. 13 - Prob. 65SPCh. 13 - Prob. 66SPCh. 13 - Prob. 67SPCh. 13 - Prob. 68SPCh. 13 - Prob. 69SPCh. 13 - Prob. 70SPCh. 13 - Prob. 71SPCh. 13 - Prob. 72SPCh. 13 - Prob. 73SPCh. 13 - Prob. 74SPCh. 13 - Prob. 75SPCh. 13 - Prob. 76SPCh. 13 - Prob. 77SPCh. 13 - Prob. 78SPCh. 13 - Prob. 79SPCh. 13 - Prob. 80SPCh. 13 - Prob. 81SPCh. 13 - Prob. 82SPCh. 13 - Prob. 83SPCh. 13 - Prob. 84SPCh. 13 - Prob. 85SPCh. 13 - Prob. 86SPCh. 13 - Prob. 87SPCh. 13 - Prob. 88SPCh. 13 - Prob. 89SPCh. 13 - Prob. 90SPCh. 13 - Prob. 91SPCh. 13 - Prob. 92SPCh. 13 - Prob. 93SPCh. 13 - Prob. 94SPCh. 13 - Prob. 95SPCh. 13 - Prob. 96SPCh. 13 - Prob. 97SPCh. 13 - Prob. 98SPCh. 13 - Prob. 99SPCh. 13 - Prob. 1CRPCh. 13 - Prob. 2CRPCh. 13 - Prob. 3CRPCh. 13 - Prob. 4CRPCh. 13 - Prob. 5CRPCh. 13 - Prob. 6CRPCh. 13 - Prob. 7CRPCh. 13 - Prob. 8CRPCh. 13 - Prob. 9CRPCh. 13 - Prob. 10CRPCh. 13 - Prob. 11CRPCh. 13 - Prob. 12CRPCh. 13 - Prob. 13CRPCh. 13 - Prob. 14CRPCh. 13 - Prob. 15CRPCh. 13 - Prob. 16CRPCh. 13 - Prob. 17CRPCh. 13 - Prob. 18CRPCh. 13 - Prob. 19CRPCh. 13 - Prob. 20CRPCh. 13 - Prob. 21CRPCh. 13 - Prob. 22CRPCh. 13 - Prob. 23CRPCh. 13 - Prob. 24CRPCh. 13 - Prob. 25CRPCh. 13 - Prob. 26CRPCh. 13 - Prob. 27CRPCh. 13 - Prob. 28CRPCh. 13 - Prob. 29CRPCh. 13 - Prob. 30CRPCh. 13 - Prob. 31CRPCh. 13 - Prob. 32CRPCh. 13 - Prob. 33CRPCh. 13 - Prob. 34CRPCh. 13 - Prob. 35CRPCh. 13 - Prob. 36CRPCh. 13 - Prob. 37CRPCh. 13 - Prob. 38CRPCh. 13 - Prob. 39CRPCh. 13 - Prob. 40CRPCh. 13 - Prob. 41CRPCh. 13 - Prob. 42CRPCh. 13 - Prob. 43CRPCh. 13 - Prob. 44CRPCh. 13 - Prob. 45CRPCh. 13 - Prob. 46CRPCh. 13 - Prob. 47CRPCh. 13 - Prob. 48CRPCh. 13 - Prob. 49CRPCh. 13 - Prob. 50CRPCh. 13 - Prob. 51CRPCh. 13 - Prob. 52CRPCh. 13 - Prob. 53CRPCh. 13 - Prob. 54CRPCh. 13 - Prob. 55CRPCh. 13 - Prob. 56CRPCh. 13 - Prob. 57CRPCh. 13 - Prob. 58CRPCh. 13 - Prob. 59CRPCh. 13 - Prob. 60CRP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Let S={v1,v2,v3} be a set of linearly independent vectors in R3. Find a linear transformation T from R3 into R3 such that the set {T(v1),T(v2),T(v3)} is linearly dependent.arrow_forwardLet f1(x)=3x and f2(x)=|x|. Graph both functions on the interval 2x2. Show that these functions are linearly dependent in the vector space C[0,1], but linearly independent in C[1,1].arrow_forward3. Let i, j, k denote the unit vectors along the three coordinate axes. Let v(t) = ti+ sintj + costk and w(t) = 3ti + 2k. (a) Compute (v.w)' (t) directly and check your answer by using the product rule (for the dot product, stated in the class). Note that the dot above, is the dot product of vectors and denotes the derivative. (b) Compute (v x w)'(t) directly and check your answer by using the product rule (for the cross product, again stated in the class). Note that the x above, is the cross product of vectors.arrow_forward
- Suppose a, b, and c are positive real numbers satisfying a2 = b2 + c2.r(t) = acos(t),bsin(t),csin(t) , 0 ≤ t ≤ 2πThen the vector-valued functiondescribes a tilted circle (a circle in a plane that is not parallel to one of the coordinateplanes). The center of the circle is O(0, 0, 0).(a) Show that |r(t)| is constant and determine the constant. This is the radius of thecircle.(b) Find an equation for the plane that contains the circle by doing the following:(i) Find three points on the circle.(ii) Use the three points to find a normal vector to the plane containing the three points.(iii) Find an equation for the plane. Check: does the plane contain the center of the circle?(iv) Simplify the equation as much as possible. (Since a, b and c are positive real numbers, you can divide by them without dividing by zero.)arrow_forward9. Find the derivo tive of the function f(x y)=xy+y2 in the direction Of the vector D=j ot the point P(2,3) fron the dinectional derivotive defini tion. b. Find the fas test inereosine ond fostest decreaisino direction at the poin+ (T, 4) of the fiunction flxiyi7)= 2+y?+ 2 2.arrow_forwardPlease solve this problem. Letters a to d. Will upvote who will thanks.arrow_forward
- السؤال 3 find the tangent line to the vector function at the given point. 7 (t) = cos (4 t) ỉ + 3 sin (4 t)j+t3 Ř at t = n 7(t) = 1+ 12 t T (n3, 3 n 2t) k None 7 (t) = 2nỉ + 12 nt j+ 3 n t Ř يقوم الانتقال إلى سؤال آخر يحفظ هذا الرد. FUJÍTSUarrow_forwardA. B. Let the position vecor be R(t) = (-t, 4 cos(2t), 4 sin(2t)). Compute the principal unit normal vector N(t). (-1,-8 sin(2t), 8 cos(2t)) √65 (-t, 4 cos(2t), 4 sin(2t)) √65 O C. (-1,-8 sin(2t), 8 cos(2t)) D. (0,- (cos(2t)),- (sin(2t))) E. (0,- (16 cos(2t)),-16 sin(2t)) 65arrow_forwardThe Acceleration , the Unit Tangent Vector and the Principal Unit Normal of a moving particle in space at a particular time are respectively given by : 2 1 -k , 2 3 I and N = i+ T = 2 1 3 Find the Normal component of the acceleration. Enter an integer or a fully reduced fraction such as -2 , 0 , 15 , 3/4 , -7/9 , etc.arrow_forward
- Please answer ASAP and correctly. Don't use decimals as final answer.arrow_forward3. Use grad h(-3,4)=5i +3j and h(-3,4)=10 to answer the following questions. a) Find the differential of h at (-3,4). b) Find a normal vector to the contour of h at (-3,4). c) Find an equation of a tangent line to the contour of h at (-3,4). d) Find a normal vector to the surface of h at (-3,4,10). e) Find an equation of a tangent plane to the graph of h at (-3,4,10).arrow_forward2. For a non-zero vector ū(t), show that dů dt 1 dū Juldt du dt where û is the unit vector in the direction of u and lül is the magnitude of u. dů By using the above equation, find if ū=ti+j.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage