Mechanics of Materials
11th Edition
ISBN: 9780137605460
Author: Russell C. Hibbeler
Publisher: Pearson Education (US)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.7, Problem 107P
The W8 × 15 wide-flange A-36 steel column is assumed to be pinned at its top and bottom, Determine the largest eccentric load P that can be applied using Eq.13−30 and the AISC equations of Sec.13.6.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the maximum allowable eccentric load P that can be applied to the wood column. The column is fixed at its base and free at its top. Use the NFPA equations of Sec. 13.6 and Eq. 13–30.
A W12 * 26 structural A992 steel column is pin connected at its ends and has a length L = 11.5 ft. Determine the maximum eccentric load P that can beapplied so the column does not buckle or yield. Compare this value with an axial critical load P applied through the centroid of the column.
Using the NFPA equations of Sec. 13.6 and Eq. 13–30, determine the maximum allowable eccentric load P that can be applied to the wood column. Assume that the column is pinned at both its top and bottom.
Chapter 13 Solutions
Mechanics of Materials
Ch. 13.3 - A 50-in long steel rod has a diameter of 1 in....Ch. 13.3 - A 12-ft wooden rectangular column has the...Ch. 13.3 - The A992 steel column can be considered pinned at...Ch. 13.3 - A steel pipe is fixed supported at its ends. If it...Ch. 13.3 - Determine the maximum force P that can be...Ch. 13.3 - The A992 steel rod BC has a diameter of 50 mm and...Ch. 13.3 - Determine the critical buckling load for the...Ch. 13.3 - The 10-ft wooden rectangular column has the...Ch. 13.3 - The 10-fl wooden column has the dimensions shown....Ch. 13.3 - Determine the maximum force P that can be applied...
Ch. 13.3 - Prob. 34PCh. 13.3 - Prob. 35PCh. 13.3 - The members of the truss are assumed to be pin...Ch. 13.3 - Solve Prob. 1336 for member AB, which has a radius...Ch. 13.3 - Prob. 40PCh. 13.3 - The ideal column has a weight w (force/length) and...Ch. 13.3 - The ideal column is subjected to the force F at...Ch. 13.3 - The column with constant El has the end...Ch. 13.3 - Consider an ideal column as in Fig.13-10 c, having...Ch. 13.3 - Consider an ideal column as in Fig. 13-10d, having...Ch. 13.5 - The aluminium column is fixed at the bottom and...Ch. 13.5 - Prob. 50PCh. 13.5 - Prob. 51PCh. 13.5 - The aluminum rod is fixed at its base and free and...Ch. 13.5 - Assume that the wood column is pin connected at...Ch. 13.5 - Prob. 54PCh. 13.5 - Prob. 59PCh. 13.5 - The wood column is pinned at its base and top. If...Ch. 13.5 - The brass rod is fixed at one end and free at the...Ch. 13.5 - The brass rod is fixed at one end and free at the...Ch. 13.5 - Prob. 65PCh. 13.5 - The W14 53 structural A992 steel column is fixed...Ch. 13.5 - The W14 53 column is fixed at its base and free...Ch. 13.5 - The stress-strain diagram for the material of a...Ch. 13.5 - Construct the buckling curve, P/A versus L/ r, for...Ch. 13.5 - The stress-strain diagram of the material can be...Ch. 13.5 - The stress-strain diagram of the material can be...Ch. 13.6 - Using the AISC equations, select from AppendixB...Ch. 13.6 - Take Y = 50 ksi.Ch. 13.6 - Using the AISC equations, select from AppendixB...Ch. 13.6 - Prob. 83PCh. 13.6 - Using the AISC equations, select from AppendixB...Ch. 13.6 - Prob. 97PCh. 13.6 - Prob. 98PCh. 13.6 - The tube is 0.25 in. thick, is made of 2014-T6...Ch. 13.6 - Prob. 100PCh. 13.6 - A rectangular wooden column has the cross section...Ch. 13.6 - Prob. 102PCh. 13.7 - The W8 15 wide-flange A-36 steel column is...Ch. 13.7 - Prob. 110PCh. 13.7 - A 20-ft-long column is made of aluminum alloy...Ch. 13.7 - A 20-ft-long column is made of aluminum alloy...Ch. 13.7 - The 2014-T6 aluminum hollow column is fixed at its...Ch. 13.7 - The 2014-T6 aluminum hollow column is fixed at its...Ch. 13 - The wood column has a thickness of 4 in. and a...Ch. 13 - The wood column has a thickness of 4 in. and a...Ch. 13 - A steel column has a length of 5 m and is free at...Ch. 13 - The square structural A992 steel tubing has outer...Ch. 13 - If the A-36 steel solid circular rod BD has a...Ch. 13 - If P = 15 kip, determine the required minimum...Ch. 13 - The steel pipe is fixed supported at its ends. If...Ch. 13 - The W200 46 wide-flange A992-steel column can be...Ch. 13 - The wide-flange A992 steel column has the cross...Ch. 13 - The wide-flange A992 steel column has the cross...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 13.12 2 of 4 I Review The 57-mm-diameter C86100 bronze rod is fixed supported at A and has a gap of 2 mm from the wall at B. B 1 m 2 mm Part A Determine the increase in temperature AT that will cause the rod to buckle. Assume that the contact at B acts as a pin. Use Epr = 103 GPa. Express your answer to three significant figures and include appropriate units. HA AT = Value Units Submit Request Answer Provide Feedback Next >arrow_forwardThe distributed load is supported by two pin-connected columns, each having a solid circular cross- section. If AB is made up of aluminum and CD of steel, determine the required diameter of each column so that both will buckle at the same time. (Esteel = 200 GPa, Sy,steel = 250 MPa, Eal = 70 GPa and Sy,al = 100 MPa). 18 kN/m 3 m 0.75 m 0.75 marrow_forwardCheck if the wood column is adequate for supporting the eccentric load of P = 800 lb applied at its top. It is fixed at its base and free at its top. Use the NFPA equations of Sec. 13.6 and Eq. 13–30.arrow_forward
- A 20-ft-long column is made of aluminum alloy 2014-T6. If it is pinned at its top and bottom, and a compressive load P is applied at point A, determine the maximum allowable magnitude of P using the equations of Sec. 13.6 and Eq. 13–30.arrow_forwardThe W150x22 column is made of A-992 steel and has length L of 4.69 m. Determine the critical load if its bottom end is fixed supported and its top is free to move about the strong axis and is pinned about the weak axis. O 2216.02 kN O 86.82 kN O 708.76 kN O 176.45 kN O 986.7 kN O 347.29 kN O 1085.85 kN O 271.46 kNarrow_forwardA 20-ft-long column is made of aluminum alloy 2014-T6. If it is pinned at its top and bottom, and a compressive load P is applied at point A, determine the maximum allowable magnitude of P using the equations of Sec. 13.6 and the interaction formula with (sb)allow = 20 ksi.arrow_forward
- An A992 steel W200 x 46 column of length 9 m is fixed at one end and free at its other end. Determine the allowable axial load the column can support if F.S. = 2 against buckling.arrow_forwardSOLVE CAREFULLY!! Please Write Clearly and Box the final Answer for Part A, with THE CORRECT UNITS! Thank you Express your answer to three significant figures and include appropriate units.arrow_forwardA 7.2 m long A-36 steel tube having the cross section shown in Fig. is to be used as a pin- ended column. Determine the maximum allowable axial load the column can support so that it does not buckle. 찜. 70 mm 7.2 m 75 mm Perarrow_forward
- A column of 22-ft effective length is to be made by welding two 9 *0.5-in. plates to a W8 * 35 rolled steel shape as shown. Determine the allowable centric load if a factor of safety 2.3 is required. Use E=29 *106 psiarrow_forwardAn A992 steel W200 * 46 column of length 9 m is fixed at one end and free at its other end. Determine the allowable axial load the column can support if F.S. = 2 against buckling.arrow_forwardThe A992 steel bar AB has a square cross section. If it is pin connected at its ends, determine the maximum allowable load P that can be applied to the frame. Use a factor of safety with respect to buckling of 2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Column buckling; Author: Amber Book;https://www.youtube.com/watch?v=AvvaCi_Nn94;License: Standard Youtube License