Mechanics of Materials
11th Edition
ISBN: 9780137605460
Author: Russell C. Hibbeler
Publisher: Pearson Education (US)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.5, Problem 61P
The brass rod is fixed at one end and free at the other end. If the eccentric load P = 200 kN is applied, determine the greatest allowable length L of the rod so that it does not buckle or yield. Ebr = 101 GPa, σY= 69 MPa.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The brass rod is ixed at one end and free at the other end. If the eccentric load P = 200 kN is applied, determine the greatest allowable length L of the rod so that it does not buckle or yield. Ebr = 101 GPa, sY = 69 MPa.
The aluminum rod is fixed at its base and free at its top. If the eccentric load P = 200 kN is applied, determine the greatest allowable length L of the rod so that it does not buckle or yield. Eal = 72 GPa, sY = 410 MPa.
The aluminum column is ixed at the bottom and free at the top. Determine the maximum force P that can be applied at A without causing it to buckle or yield. Use a factor of safety of 3 with respect to buckling and yielding. Eal = 70 GPa, sY = 95 MPa.
Chapter 13 Solutions
Mechanics of Materials
Ch. 13.3 - A 50-in long steel rod has a diameter of 1 in....Ch. 13.3 - A 12-ft wooden rectangular column has the...Ch. 13.3 - The A992 steel column can be considered pinned at...Ch. 13.3 - A steel pipe is fixed supported at its ends. If it...Ch. 13.3 - Determine the maximum force P that can be...Ch. 13.3 - The A992 steel rod BC has a diameter of 50 mm and...Ch. 13.3 - Determine the critical buckling load for the...Ch. 13.3 - The 10-ft wooden rectangular column has the...Ch. 13.3 - The 10-fl wooden column has the dimensions shown....Ch. 13.3 - Determine the maximum force P that can be applied...
Ch. 13.3 - Prob. 34PCh. 13.3 - Prob. 35PCh. 13.3 - The members of the truss are assumed to be pin...Ch. 13.3 - Solve Prob. 1336 for member AB, which has a radius...Ch. 13.3 - Prob. 40PCh. 13.3 - The ideal column has a weight w (force/length) and...Ch. 13.3 - The ideal column is subjected to the force F at...Ch. 13.3 - The column with constant El has the end...Ch. 13.3 - Consider an ideal column as in Fig.13-10 c, having...Ch. 13.3 - Consider an ideal column as in Fig. 13-10d, having...Ch. 13.5 - The aluminium column is fixed at the bottom and...Ch. 13.5 - Prob. 50PCh. 13.5 - Prob. 51PCh. 13.5 - The aluminum rod is fixed at its base and free and...Ch. 13.5 - Assume that the wood column is pin connected at...Ch. 13.5 - Prob. 54PCh. 13.5 - Prob. 59PCh. 13.5 - The wood column is pinned at its base and top. If...Ch. 13.5 - The brass rod is fixed at one end and free at the...Ch. 13.5 - The brass rod is fixed at one end and free at the...Ch. 13.5 - Prob. 65PCh. 13.5 - The W14 53 structural A992 steel column is fixed...Ch. 13.5 - The W14 53 column is fixed at its base and free...Ch. 13.5 - The stress-strain diagram for the material of a...Ch. 13.5 - Construct the buckling curve, P/A versus L/ r, for...Ch. 13.5 - The stress-strain diagram of the material can be...Ch. 13.5 - The stress-strain diagram of the material can be...Ch. 13.6 - Using the AISC equations, select from AppendixB...Ch. 13.6 - Take Y = 50 ksi.Ch. 13.6 - Using the AISC equations, select from AppendixB...Ch. 13.6 - Prob. 83PCh. 13.6 - Using the AISC equations, select from AppendixB...Ch. 13.6 - Prob. 97PCh. 13.6 - Prob. 98PCh. 13.6 - The tube is 0.25 in. thick, is made of 2014-T6...Ch. 13.6 - Prob. 100PCh. 13.6 - A rectangular wooden column has the cross section...Ch. 13.6 - Prob. 102PCh. 13.7 - The W8 15 wide-flange A-36 steel column is...Ch. 13.7 - Prob. 110PCh. 13.7 - A 20-ft-long column is made of aluminum alloy...Ch. 13.7 - A 20-ft-long column is made of aluminum alloy...Ch. 13.7 - The 2014-T6 aluminum hollow column is fixed at its...Ch. 13.7 - The 2014-T6 aluminum hollow column is fixed at its...Ch. 13 - The wood column has a thickness of 4 in. and a...Ch. 13 - The wood column has a thickness of 4 in. and a...Ch. 13 - A steel column has a length of 5 m and is free at...Ch. 13 - The square structural A992 steel tubing has outer...Ch. 13 - If the A-36 steel solid circular rod BD has a...Ch. 13 - If P = 15 kip, determine the required minimum...Ch. 13 - The steel pipe is fixed supported at its ends. If...Ch. 13 - The W200 46 wide-flange A992-steel column can be...Ch. 13 - The wide-flange A992 steel column has the cross...Ch. 13 - The wide-flange A992 steel column has the cross...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 100-mm-long rod has a diameter of 15 mm. If an axial tensile load of 10 kN is applied to it, determine the change in its diameter. E = 70 GPa, n = 0.35.arrow_forwardThe rigid bar is pinned at A and supported by two aluminum rods, each having a diameter of 1 in. a modulus of elasticity Eal = 10(103) ksi, and yield stress of (sY)al = 40 ksi. If the bar is initially vertical, determine the angle of tilt of the bar when the 20-kip load is applied.arrow_forwardThe column shown below, made from medium carbon steel AISI 1040 (E = 207 GPa and Sy = 290 MPa), has an outer diameter of 50 mm and a wall thickness of 5 mm. If the pipe is held in place by a guy wire, determine the largest horizontal force P that can be applied without causing the pipe to buckle. Use the following correlations if needed,arrow_forward
- The 3m column has the dimensions shown. Determine the critical load if the bottom is fixed and the top is pinned. E = 12GPA, Yield Stress 35 MPa 3 m 100 mm 50 mmarrow_forwardDetermine if the frame can support a load of P = 20 kN if the factor of safety with respect to buckling of member AB is F.S. = 3. Assume that AB is made of steel and is pinned at its ends for x–x axis buckling and fixed at its ends for y–y axis buckling. Est = 200 GPa, sY = 360 MPa.arrow_forwardThe pin-connected assembly consists of aluminum rods (1) and (2) and steel rod (3). The aluminum rods each have a diameter of 14 mm and an elastic modulus of E = 70 GPa. The steel rod has a diameter of 15 mm and an elastic modulus of E= 180 GPa. Assume a = 3.0 m, b = 1.6 m, and c = 1.0 m. What is the magnitude of load P that is necessary to displace point A 7mm to the left? A Answer: P = i (3) eTextbook and Media Save for Later B b D kN Attempts: 0 of 5 used Submit Answerarrow_forward
- The pin-connected assembly consists of aluminum rods (1) and (2) and steel rod (3). The aluminum rods each have a diameter of 14 mm and an elastic modulus of E = 70 GPa. The steel rod has a diameter of 15 mm and an elastic modulus of E= 180 GPa. Assume a = 3.0 m, b = 1.6 m, and c = 1.0 m. What is the magnitude of load P that is necessary to displace point A 7 mm to the left? A Answer: P = i (3) eTextbook and Media Save for Later B b D kN Attempts: 0 of 5 used Submit Answerarrow_forwardThe pin-connected assembly consists of aluminum rods (1) and (2) and steel rod (3). The aluminum rods each have a diameter of 14 mm and an elastic modulus of E= 65 GPa. The steel rod has a diameter of 18 mm and an elastic modulus of E= 215 GPa. Assume a = 3.2 m, b = 1.3 m, and c = 1.4 m. What is the magnitude of load P that is necessary to displace point A 10 mm to the left? (1) (3) A 4 Answer: P = i B (2) D KNarrow_forwardThe wood column is pinned at its base and top. If L = 5 ft, determine the maximum eccentric load P that can be applied without causing the column to buckle or yield. Ew = 1.8(103) ksi, sY = 8 ksi.arrow_forward
- The steel bar AB of the frame is assumed to be pin connected at its ends for y–y axis buckling. If P = 18 kN, determine the factor of safety with respect to buckling about the y–y axis. Est = 200 GPa, sY = 360 MPa.arrow_forwardA column of intermediate length buckles when the compressive stress is 40 ksi. If the slenderness ratio is 60, determine the tangent modulus.arrow_forwardThe steel pipe is fixed supported at its ends. If it is 4 m long and has an outer diameter of 50 mm, determine its required thickness so that it can support an axial load of P = 100 kN without buckling. Est = 200 GPa, sY = 250 MPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Column buckling; Author: Amber Book;https://www.youtube.com/watch?v=AvvaCi_Nn94;License: Standard Youtube License