Concept explainers
a)
To determine: Why M/M/1 model is relevant here.
Introduction: In order to predict the waiting time and length of the queue, queueing model will be framed. Queueing theory is the mathematical model that can be used for the decision-making process regarding the resources required to provide a service.
b)
To determine: The probability that a passenger will have to wait before being checked for weapons.
Introduction: In order to predict the waiting time and length of the queue, queueing model will be framed. Queueing theory is the mathematical model that can be used for the decision-making process regarding the resources required to provide a service.
c)
To determine: The average number of customers waiting in the line.
Introduction: In order to predict the waiting time and length of the queue, queueing model will be framed. Queueing theory is the mathematical model that can be used for the decision-making process regarding the resources required to provide a service.
d)
To determine: The average time customers spend on checkpoint including waiting time.
Introduction: In order to predict the waiting time and length of the queue, queueing model will be framed. Queueing theory is the mathematical model that can be used for the decision-making process regarding the resources required to provide a service.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
EBK PRACTICAL MANAGEMENT SCIENCE
- During nearly four decades of business operations, Memphis-based FedEx has earned a reputation for reliable, on-time delivery of packages to homes and offices around the country. Founder Fred Smith originally focused on overnight deliveries, choosing Memphis as the company’s headquarters because the airport rarely closes due to bad weather. With FedEx’s planes departing and arriving on schedule nearly all the time, its express shipments usually remained on schedule, then and now. To reassure customers that delivery will take place when and where promised, the firm offers a money-back guarantee on time-sensitive express shipments, among other services. FedEx has steadily expanded its portfolio of services since the 1970s. Its original overnight express delivery is currently available to U.S. customers in various forms, including “first-overnight” delivery, next-morning delivery, next-afternoon delivery, and budget-pleasing two- or three-day delivery. The company’s services also include cost-effective ground delivery for parcels and extra-speedy same-day delivery for urgent deliveries within 1,800 cities. Over the years, FedEx has widened its delivery network to more than 220 countries. It has purchased more cargo jets and acquired specialized shipping firms, including Tiger International, Roberts Express, RPS, and TNT Express, to support global growth. For international business customers needing products, parts, or raw materials shipped across countries or continents, the company now offers time-saving services such as commercial freight forwarding and cross-border logistical support. To add the convenience of local drop-off and pickup points for U.S. consumers and small businesses, FedEx acquired the Kinko’s office services company in 2004 and later rebranded it as FedEx Office. This acquisition also added printing and copying to the menu of services offered. Then the company arranged for large U.S. retailers such as Walgreens, Albertsons, Kroger, and Safeway to accept packages for shipment and receive package delivery for customer pickup in thousands of store locations. This means people who want to send a package can head to a nearby retailer and ship where they shop, rather than making a separate trip to the FedEx location. It’s also a safe alternative for packages to be picked up by people who don’t want FedEx shipments left by the front door. Another service FedEx offers to small and mid-sized businesses, including retailers, is FedEx Fulfillment. The purpose is to expedite order fulfillment by having each business store its products in a FedEx warehouse. Then, when the business’s customers place orders, FedEx puts the products into boxes bearing the business’s own logo and ships directly to those customers. The business doesn’t need a separate warehouse or staff for fulfillment, and packages are on their way to customers more quickly because the products were in FedEx’s warehouse, ready to be packed and shipped. This service puts FedEx into direct competition with Amazon.com, which offers a similar service to merchants that sell through the online Amazon Marketplace. But it also gives businesses that don’t sell via Amazon a fast and professional fulfillment alternative. FedEx is careful to let customers know, through media and social-media announcements, when it anticipates that extreme weather or other conditions will cause delays or force it to halt pickups and deliveries. For the duration of Hurricane Irma, for example, FedEx said it would suspend deliveries in Florida. Some Florida customers who had ordered generators to be delivered via FedEx were unhappy, because they worried about being without power during and after the storm. But one FedEx employee loaded several generator orders into his car and took them to customers himself. When a customer posted a grateful compliment to FedEx on Facebook, the message generated thousands of likes, shares, and positive comments. The company also received positive comments for its donations of cash and transportation services to areas devastated by Hurricanes Irma, Harvey, and Maria. According to the American Customer Satisfaction Index (ACSI), FedEx often tops the list of U.S. shipping companies as ranked by customers surveyed. Every day, the company delivers 13 million packages—and during the busy year-end holiday season, it delivers many more. By meeting customers’ expectations for on-time deliveries, FedEx has increased annual revenues beyond $60 billion and positioned itself for continued growth in the future. How does FedEx’s money-back guarantee address customers’ concerns about heterogeneity?arrow_forwardCustomers arrive at Best-Bank-in-Town’s (BBT) sole ATM location at a rate of 21 customers per hour. It is assumed that the arrival process is random. BBT recently hired an intern who estimated that the average service time is 2 minutes per customer with a standard deviation of 1.2 minutes. [Assume that the arrival rate is the same throughout the day without peak and off-peak considerations and that there is only one ATM machine at that location] 1. Calculate average waiting time for ATM user at the BBT location 2. Calculate average length of queue at the ATM location (i.e. average numbers of customers waiting for service)? 3. What is the probability that an arriving customer has no waiting time to use the ATM? 4. BBT wants to cut the average waiting time in half without necessarily adding another ATM machine. They are in discussions with their ATM software provider who has told them that their new software is very consistent with information retrieval and can greatly minimize the…arrow_forwardCT Commercial Bank is the only bank in the town of Kuching, Sarawak. On a typical Friday, an average of 12 customers per hour arrive at the bank to transact business. There is currently one teller at the bank, and the average time required to transact business is 4 minutes. It is assumed that service times may be described by the negative exponential distribution. If a single teller is used a) Compute the average time that customers must wait before transact the business. b) Calculate the value of probability that there are no customer transact the business in the system. c) Compute the average time that a customer transact the business in the system.arrow_forward
- Each airline passenger and his or her luggage must bechecked to determine whether he or she is carrying weaponsonto the airplane. Suppose that at Gotham City Airport, anaverage of 10 passengers per minute arrive (interarrivaltimes are exponential). To check passengers for weapons,the airport must have a checkpoint consisting of a metal detector and baggage X-ray machine. Whenever a check-point is in operation, two employees are required. A checkpoint can check an average of 12 passengers perminute (the time to check a passenger is exponential). Underthe assumption that the airport has only one checkpoint,answer the following questions:a What is the probability that a passenger will have towait before being checked for weapons?b On the average, how many passengers are waiting in line to enter the checkpoint? 1082 CHAPTER 2 0 Queuing Theoryc On the average, how long will a passenger spend atthe checkpoint?arrow_forwardAssume trucks arriving for loading/unloading at a truck dock from a single server waiting line. The mean arrival rate is three trucks per hour, and the mean service rate is six trucks per hour. Use the Single Server QueueExcel template to answer the following questions. Do not round intermediate calculations. Round your answers to three decimal places. What is the probability that the truck dock will be idle? What is the average number of trucks in the queue? truck(s) What is the average number of trucks in the system? truck(s) What is the average time a truck spends in the queue waiting for service? hour(s) What is the average time a truck spends in the system? hour(s) What is the probability that an arriving truck will have to wait? What is the probability that more than two trucks are waiting for service?arrow_forwardConsider a Poisson queue with random arrivals at the rate of 12 customers per hour and the following steady- state probabilities: po = 1/3, p1 = 1/2, p2 = 1/6, and p, = 0 for n = 3,4,5, ... . What is the mean (or effective) arrival rate in customers per hour for this queuing system? Consider drawing a rate diagram to assist in your solution. O 10 12 O none of the other choices O 2arrow_forward
- A horologist (watchmaker) is typically able to service a mechanical watch in about 120 minutes (exponential distribution). Assuming an 8 hour work-day, the watchmaker averages 3 customers arriving at his shop every day following a poisson distribution. The watchmaker just purchased a new machine that will polish the dial and crystal reducing his service time by 20 minutes per watch. How much will the line for a watch waiting to be serviced be reduced by the watchmaker using this new machine, assuming no increase in customer demand? O 2.25 watches waiting for service O The number waiting to be serviced will be reduced by about 1.2 watches O The number waiting to be serviced will be reduced by about 0.4 watches The number waiting to be serviced will be reduced by about 1.45 watchesarrow_forwardA typical TSA agent at Piedmont Triad International Airport takes approximately 1.15 minutes to screeneach passenger that arrives at the security gate. During the day, a passenger arrives at the gate onaverage every 1.3 minutes. Both the service rate and arrival rate follow a Poisson distribution. Based onthis information and the assumption that only one screening line is open at the security gate, answer thefollowing questions. Round calculations to at least 3 decimal places.Note: Round each calculation to at least 3 decimal places. a) What is the average number of passengers waiting in line to be screened? b) What is the average amount of time (in minutes) passengers spend waiting in line? c) What is the average amount of time (in minutes) passengers spend in the screening system? d) What is percent of the time does the typical TSA agent spend actively screening passengers? e) Throughout the day, passenger arrival rates vary with the greatest number of passengers arriving about 45…arrow_forwardAssume trucks arriving for loading/unloading at a truck dock from a single server waiting line. The mean arrival rate is three trucks per hour, and the mean service rate is five trucks per hour. Use the Single Server Queue Excel template to answer the following questions. Do not round intermediate calculations. Round your answers to three decimal places. What is the probability that the truck dock will be idle? What is the average number of trucks in the queue? truck(s) What is the average number of trucks in the system? truck(s) What is the average time a truck spends in the queue waiting for service? hour(s) What is the average time a truck spends in the system? hour(s) What is the probability that an arriving truck will have to wait? What is the probability that more than two trucks are waiting for service?arrow_forward
- The Peachtree Airport in Atlanta serves light aircraft. It has a single runway and one air traffic controller to land planes. It takes an airplane 12 minutes to land and clear the runway (following an exponential distribution). Planes arrive at the airport at the rate of one every 15 minutes. The arrival rate follows a Poisson distribution. A plane is considered to have entered the “system” once it has notified the airport that it is in the vicinity and wants to land. For purposes of this analysis, you can ignore the planes taking off. a) Determine the average number of planes that are in the system waiting to land. b) Find the average time a plane is in the system either waiting to land or landing. c) What is the probability that a plane approaching the airport will find at least two other that are already in the “system” that is waiting to land? d) Suppose that the cost assigned to a plane while it is waiting to land (in the stack) is $1,000…arrow_forwardA large insurance company maintains a central computing system that contains a variety of information about customer accounts. Insurance agents in a six-state area use telephone lines to access the customer information database. Currently, the company's central computer system allows three users to access the central computer simultaneously. Agents who attempt to use the system when it is full are denied access; no waiting is allowed. Management realizes that with its expanding business, more requests will be made to the central information system. Being denied access to the system is inefficient as well as annoying for agents. Access requests follow a Poisson probability distribution, with a mean of 35 calls per hour. The service rate per line is 19 calls per hour. (a) What is the probability that 0, 1, 2, and 3 access lines will be in use? (Round your answers to four decimal places.) P(0)=P(1)=P(2)=P(3)= (b) What is the probability that an agent will be denied access to the…arrow_forwardA large insurance company maintains a central computing system that contains a variety of information about customer accounts. Insurance agents in a six-state area use telephone lines to access the customer information database. Currently, the company's central computer system allows three users to access the central computer simultaneously. Agents who attempt to use the system when it is full are denied access; no waiting is allowed. Management realizes that with its expanding business, more requests will be made to the central information system. Being denied access to the system is inefficient as well as annoying for agents. Access requests follow a Poisson probability distribution, with a mean of 29 calls per hour. The service rate per line is 19 calls per hour. (a) What is the probability that 0, 1, 2, and 3 access lines will be in use? (Round your answers to four decimal places.) P(0) = P(1) = P(2) = P(3) = (b) What is the probability that an agent will be denied access to the…arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,MarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational Publishing