Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781260048766
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13.3, Problem 60P
A mixture of 65 percent N2 and 35 percent CO2 gases (on a mass basis) enters the nozzle of a turbojet engine at 60 psia and 1400 R with a low velocity, and it expands to a pressure of 12 psia. If the isentropic efficiency of the nozzle is 88 percent, determine (a) the exit temperature and (b) the exit velocity of the mixture. Assume constant specific heats at room temperature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
This question related to thermodynamics
The Brayton cycle (1–2–3–4–1) can be modeled as a closed cycle with air (ideal gas with known constant properties) with a mass flow rate of m˙ B = 60 kg/s. The minimum and maximum pressures of the Brayton cycle are known and equal p B min = 0.3 MPa and p B max = 1.6 MPa, as well as the absorbed power Q˙H = 50 MW and the minimum temperature (T1 = 25ºC) of the cycle. Knowing that all processes occur in devices that operate in steady state, calculate the following parameters for each cycle: ( A ). The temperature at all points; ( B ). The compression and expansion power of each Brayton-Rankine cycle, as well as the absorbed/rejected heat transfer rate. ( C ). The efficiencies of each cycle, as well as the overall efficiency of the combined cycle (The combined cycle efficiency is calculated from the sum of the net work of the cycles under the heat supplied to the combined cycle). ( D ). The entropies generated from each process, as well as the total entropy for each cycle. General data: R…
Consider a regenerative gas-turbine power plant with two stages of compression and two stages of expansion. The overall pressure
ratio of the cycle is 9. Argon enters each stage of the compressor at 300 K and each stage of the turbine at 1200 K. Assuming constant
specific heats, determine the minimum mass flow rate of argon needed to develop a net power output of 110 MW. The properties of
argon at room temperature are cp = 0.5203 kJ/kg-K and k = 1.667.
The minimum mass flow rate of argon is
kg/s.
Chapter 13 Solutions
Thermodynamics: An Engineering Approach
Ch. 13.3 - What are mass and mole fractions?Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 7PCh. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - A gas mixture consists of 20 percent O2, 30...Ch. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - Prob. 18PCh. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Prob. 22PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Prob. 24PCh. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - A gas mixture at 300 K and 200 kPa consists of 1...Ch. 13.3 - Prob. 29PCh. 13.3 - Separation units often use membranes, absorbers,...Ch. 13.3 - Prob. 31PCh. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - An engineer has proposed mixing extra oxygen with...Ch. 13.3 - A rigid tank contains 0.5 kmol of Ar and 2 kmol of...Ch. 13.3 - A mixture of gases consists of 0.9 kg of oxygen,...Ch. 13.3 - Prob. 37PCh. 13.3 - One pound-mass of a gas whose density is 0.001...Ch. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 43PCh. 13.3 - Prob. 44PCh. 13.3 - Prob. 45PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 47PCh. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - Prob. 50PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - A mixture of nitrogen and carbon dioxide has a...Ch. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - A mixture of gases consists of 0.1 kg of oxygen, 1...Ch. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - An insulated rigid tank is divided into two...Ch. 13.3 - Prob. 59PCh. 13.3 - A mixture of 65 percent N2 and 35 percent CO2...Ch. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 68PCh. 13.3 - Prob. 69PCh. 13.3 - The gas passing through the turbine of a simple...Ch. 13.3 - Prob. 71PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 79PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Is it possible for an adiabatic liquid-vapor...Ch. 13.3 - Prob. 84PCh. 13.3 - Prob. 85RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - A mixture of gases is assembled by first filling...Ch. 13.3 - Prob. 90RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 95RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - Prob. 101RPCh. 13.3 - Prob. 102FEPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 105FEPCh. 13.3 - Prob. 106FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEPCh. 13.3 - Prob. 111FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. Air is compressed in a diesel engine from an initial pressure of 13 psia and a temperature of 120°F to one-twelfth of its original volume. Calculate the final temperature assuming the compression to be adiabatic.arrow_forwardHot combustion gases enter the nozzle of a turbojet engine at 260 kPa, 747°C, and 80 m/s, and they exit at a pressure of 85 kPa. Assuming an isentropic efficiency of 92 percent and treating the combustion gases as air, determine the exit velocity.arrow_forwardIf the higher and lower temperature limit of the Carnot cycle is 2500C and 200C, determine the work of expansion of the engine in each cycle. Use an air standard analysis.arrow_forward
- Hot combustion gases enter the nozzle of a turbojet engine at 350 kPa, 1007 0C, and 95 m/s, and they exit at a pressure of 100 kPa. Assuming an isentropic efficiency of 95 percent and treating the combustion gases as air determine a- The exit velocity b- The exit temperaturearrow_forwardDetermine the temperature change undergone by an air as an ideal gas when expanding in the turbine adiabatically and irreversibly through a pressure ratio of 5 from an initial pressure of 700 kPa and temperature of 727°C according to the law pv12 = C. Assume Cp 1.0035 kJ/kg.K and k 1.4.arrow_forwardIn a closed feedwater (FW) heater, a mixture enters the heater with a mass flow rate m1 and enthalpy h1 and leaves with an enthalpy h2. A second stream into the heater has a mass flow rate m2 and enthalpy h3 and it leaves with an enthalpy h4. What is a correct first law equation for this FW heater? m1·(h3 - h4) = m2·(h1 - h2) m1·(h1 - h2) = m2·(h4 - h3) m1·(h1 - h2) = m2·(h3 - h4) m1·m2 = (h1 -h2)·(h3 - h4) m1·(h1 - h3) = m2·(h2 - h4)arrow_forward
- A turbojet aircraft is flying with a velocity of 280 m/s at an altitude of 9150 m, where the ambient conditions are 32 kPa and −32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1100 K. Air enters the compressor at a rate of 50 kg/s, and the jet fuel has a heating value of 42,700 kJ/kg. Assuming ideal operation for all components and constant specific heats for air at room temperature, determine the velocity of the exhaust gases,arrow_forwardA turbojet aircraft is flying with a velocity of 280 m/s at an altitude of 9150 m, where the ambient conditions are 32 kPa and −32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1100 K. Air enters the compressor at a rate of 50 kg/s, and the jet fuel has a heating value of 42,700 kJ/kg. Assuming ideal operation for all components and constant specific heats for air at room temperature, determine the rate of fuel consumption.arrow_forwardA turbojet aircraft is flying with a velocity of 280 m/s at an altitude of 9150 m, where the ambient conditions are 32 kPa and −32°C. The pressure ratio across the compressor is 12, and the temperature at the turbine inlet is 1100 K. Air enters the compressor at a rate of 50 kg/s, and the jet fuel has a heating value of 42,700 kJ/kg. Assuming ideal operation for all components and constant specific heats for air at room temperature, determine the propulsive power developed.arrow_forward
- i need the answer quicklyarrow_forward2. In a power station, saturated steam is generated at 252°C by transferring heat from the hot gases gener- ated in the combustion chamber. The gases are cooled from 1100°C to 550°C during transferring the heat for steam generation. Determine the increase in total entropy of the combined system of gas and steam and increase in unavailable energy on the basis of one kg of steam generated. Assume water enters the boiler at saturated condition and leaves as saturated steam. [Ans. 1.99 kJ/K ; 597 kJ/kg of steam formed]arrow_forwardWater vapor enters an isentropic turbine at a flow rate of 1 kg/s, a temperature of 500 °C and a pressure of 3000 kPa. Isentropic turbine has two outputs. While 20% of the inlet flow leaves the turbine at a temperature of 350°C and a pressure of 1000 kPa from one of the outlets, the remainder is separated from the other outlet at 200°C and at 200 kPa pressure. Assuming the ambient temperature is 25 °C. a) Find the isentropic efficiency of the turbine. b) Find the second law efficiency of the turbine.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License