BEGINNING+INTERM.ALG.(LL) >CUSTOM PKG.<
6th Edition
ISBN: 9781266148941
Author: Miller
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.3, Problem 37PE
To determine
The equation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For Exercises 67–70, identify the equation as representing an ellipse or a hyperbola, and match the equation with the graph.
(x – 5)²
67.
(y + 2)²
= 1
(x – 5)?
68.
(y + 2)?
= 1
49
36
36
49
(x - 5)?
69.
(y + 2)²
= 1
(y + 2)²
= 1
(x - 5)?
49
36
70.
49
36
А.
В.
С.
D.
15
12
41
6
-6-4-2
4 6 8 10 12 14
4 6 8 10 12 14
-6 -4
2.
4 6 8 10l 12 14
-6
1k 15 18 21
-6
For Exercises 27–34, an equation of a parabola x = 4py or y = 4px is given.
a. Identify the vertex, value of p, focus, and focal diameter of the parabola.
b. Identify the endpoints of the latus rectum.
c. Graph the parabola.
d. Write equations for the directrix and axis of symmetry. (See Examples 2-3)
27. x
-4y
28. x
-20y
29. 10y
= 80x
30. 3y = 12x
31. 4x
40y
32. 2x
14y
33. y =
34. y = -2x
= -X
%3D
For Exercises 43–48, the equation represents a conic section (nondegenerative case).
a. Identify the type of conic section. (See Example 6)
b. Graph the equation on a graphing utility.
43. 4x – 4xy + 5y – 20 = 0
44. 6x + 4V3xy + 2y - 18x + 18V3y – 72 = 0
45. 2x – 6xy + 3y²
- 4x + 12y – 9 = 0
46. 5x – 3xy + 2y – 6 = 0
47. 4x + 8xy + 4y – 2x – 5y – 2 = 0
48. 4x? + 8V3xy + 3y + 2x – 12y – 6 = 0
Chapter 13 Solutions
BEGINNING+INTERM.ALG.(LL) >CUSTOM PKG.<
Ch. 13.1 - Find the distance between the points ( − 4 , − 2 )...Ch. 13.1 - Prob. 2SPCh. 13.1 - Prob. 3SPCh. 13.1 - Prob. 4SPCh. 13.1 - Prob. 5SPCh. 13.1 - Prob. 6SPCh. 13.1 - Prob. 7SPCh. 13.1 - Prob. 8SPCh. 13.1 - Prob. 1PECh. 13.1 - Prob. 2PE
Ch. 13.1 - Prob. 3PECh. 13.1 - Prob. 4PECh. 13.1 - Prob. 5PECh. 13.1 - Prob. 6PECh. 13.1 - Prob. 7PECh. 13.1 - Prob. 8PECh. 13.1 - Prob. 9PECh. 13.1 - Prob. 10PECh. 13.1 - Prob. 11PECh. 13.1 - Prob. 12PECh. 13.1 - Prob. 13PECh. 13.1 - Prob. 14PECh. 13.1 - Prob. 15PECh. 13.1 - Prob. 16PECh. 13.1 - Prob. 17PECh. 13.1 - Prob. 18PECh. 13.1 - Prob. 19PECh. 13.1 - Prob. 20PECh. 13.1 - Prob. 21PECh. 13.1 - Prob. 22PECh. 13.1 - Prob. 23PECh. 13.1 - Prob. 24PECh. 13.1 - Prob. 25PECh. 13.1 - Prob. 26PECh. 13.1 - Prob. 27PECh. 13.1 - Prob. 28PECh. 13.1 - Prob. 29PECh. 13.1 - Prob. 30PECh. 13.1 - Prob. 31PECh. 13.1 - Prob. 32PECh. 13.1 - Prob. 33PECh. 13.1 - Prob. 34PECh. 13.1 - Prob. 35PECh. 13.1 - Prob. 36PECh. 13.1 - Prob. 37PECh. 13.1 - Prob. 38PECh. 13.1 - Prob. 39PECh. 13.1 - Prob. 40PECh. 13.1 - Prob. 41PECh. 13.1 - Prob. 42PECh. 13.1 - Prob. 43PECh. 13.1 - Prob. 44PECh. 13.1 - Prob. 45PECh. 13.1 - Prob. 46PECh. 13.1 - Prob. 47PECh. 13.1 - Prob. 48PECh. 13.1 - For Exercises 49–54, write an equation that...Ch. 13.1 - Prob. 50PECh. 13.1 - Prob. 51PECh. 13.1 - Prob. 52PECh. 13.1 - Prob. 53PECh. 13.1 - Prob. 54PECh. 13.1 - Prob. 55PECh. 13.1 - Prob. 56PECh. 13.1 - Prob. 57PECh. 13.1 - Prob. 58PECh. 13.1 - Prob. 59PECh. 13.1 - Prob. 60PECh. 13.1 - Prob. 61PECh. 13.1 - Prob. 62PECh. 13.1 - Prob. 63PECh. 13.1 - Prob. 64PECh. 13.1 - Prob. 65PECh. 13.1 - Prob. 66PECh. 13.1 - Prob. 67PECh. 13.1 - Prob. 68PECh. 13.1 - Prob. 69PECh. 13.1 - For Exercises 65–72, find the midpoint of the line...Ch. 13.1 - For Exercise 65-72, find the midpoint of the line...Ch. 13.1 - For Exercise 65-72, find the midpoint of the line...Ch. 13.1 - Prob. 73PECh. 13.1 - Prob. 74PECh. 13.1 - For Exercises 75–78, the two given points are...Ch. 13.1 - Prob. 76PECh. 13.1 - Prob. 77PECh. 13.1 - Prob. 78PECh. 13.1 - Prob. 79PECh. 13.1 - Prob. 80PECh. 13.1 - Prob. 81PECh. 13.1 - Prob. 82PECh. 13.1 - Prob. 83PECh. 13.1 - Prob. 84PECh. 13.1 - Prob. 85PECh. 13.1 - Prob. 86PECh. 13.1 - Prob. 87PECh. 13.1 - Prob. 88PECh. 13.2 - Prob. 1SPCh. 13.2 - Prob. 2SPCh. 13.2 - Prob. 3SPCh. 13.2 - Prob. 4SPCh. 13.2 - Prob. 5SPCh. 13.2 - Prob. 6SPCh. 13.2 - Prob. 7SPCh. 13.2 - Prob. 8SPCh. 13.2 - Prob. 9SPCh. 13.2 - Prob. 10SPCh. 13.2 - Prob. 11SPCh. 13.2 - 1. a. A circle, a parabola, an ellipse, and a...Ch. 13.2 - Prob. 2PECh. 13.2 - Prob. 3PECh. 13.2 - Prob. 4PECh. 13.2 - Prob. 5PECh. 13.2 - Prob. 6PECh. 13.2 - Prob. 7PECh. 13.2 - Prob. 8PECh. 13.2 - Prob. 9PECh. 13.2 - Prob. 10PECh. 13.2 - Prob. 11PECh. 13.2 - Prob. 12PECh. 13.2 - Prob. 13PECh. 13.2 - Prob. 14PECh. 13.2 - Prob. 15PECh. 13.2 - Prob. 16PECh. 13.2 - Prob. 17PECh. 13.2 - Prob. 18PECh. 13.2 - Prob. 19PECh. 13.2 - For Exercises 25–33, determine the vertex by using...Ch. 13.2 - Prob. 21PECh. 13.2 - Prob. 22PECh. 13.2 - Prob. 23PECh. 13.2 - Prob. 24PECh. 13.2 - Prob. 25PECh. 13.2 - Prob. 26PECh. 13.2 - Prob. 27PECh. 13.2 - Prob. 28PECh. 13.2 - Prob. 29PECh. 13.2 - Prob. 30PECh. 13.2 - Prob. 31PECh. 13.2 - Prob. 32PECh. 13.2 - Prob. 33PECh. 13.2 - Prob. 34PECh. 13.2 - Prob. 35PECh. 13.2 - Prob. 36PECh. 13.2 - Prob. 37PECh. 13.2 - Prob. 38PECh. 13.2 - Prob. 39PECh. 13.2 - Prob. 40PECh. 13.2 - Prob. 41PECh. 13.2 - Prob. 42PECh. 13.2 - Prob. 43PECh. 13.3 - Prob. 1SPCh. 13.3 - Prob. 2SPCh. 13.3 - Prob. 3SPCh. 13.3 - Prob. 4SPCh. 13.3 - Prob. 5SPCh. 13.3 - Prob. 1PECh. 13.3 - Prob. 2PECh. 13.3 - Prob. 3PECh. 13.3 - Prob. 4PECh. 13.3 - Prob. 5PECh. 13.3 - Prob. 6PECh. 13.3 - Prob. 7PECh. 13.3 - Prob. 8PECh. 13.3 - Prob. 9PECh. 13.3 - Prob. 10PECh. 13.3 - Prob. 11PECh. 13.3 - Prob. 12PECh. 13.3 - Prob. 13PECh. 13.3 - Prob. 14PECh. 13.3 - Prob. 15PECh. 13.3 - Prob. 16PECh. 13.3 - Prob. 17PECh. 13.3 - Prob. 18PECh. 13.3 - Prob. 19PECh. 13.3 - Prob. 20PECh. 13.3 - Prob. 21PECh. 13.3 - Prob. 22PECh. 13.3 - Prob. 23PECh. 13.3 - Prob. 24PECh. 13.3 - Prob. 25PECh. 13.3 - Prob. 26PECh. 13.3 - Prob. 27PECh. 13.3 - Prob. 28PECh. 13.3 - Prob. 29PECh. 13.3 - Prob. 30PECh. 13.3 - Prob. 31PECh. 13.3 - Prob. 32PECh. 13.3 - For Exercises 33–40, use the equation in standard...Ch. 13.3 - Prob. 34PECh. 13.3 - Prob. 35PECh. 13.3 - Prob. 36PECh. 13.3 - Prob. 37PECh. 13.3 - Prob. 38PECh. 13.3 - Prob. 39PECh. 13.3 - Prob. 40PECh. 13.3 - Prob. 41PECh. 13.3 - Prob. 42PECh. 13.3 - Prob. 43PECh. 13.3 - Prob. 44PECh. 13.3 - Prob. 45PECh. 13.3 - Prob. 46PECh. 13.3 - Prob. 47PECh. 13.3 - Prob. 48PECh. 13.3 - Prob. 49PECh. 13.3 - Prob. 50PECh. 13.3 - Prob. 51PECh. 13.3 - Prob. 52PECh. 13.3 - Prob. 1PRECh. 13.3 - For Exercises 1–8, identify the formula. x 2 a 2 +...Ch. 13.3 - Prob. 3PRECh. 13.3 - Prob. 4PRECh. 13.3 - Prob. 5PRECh. 13.3 - Prob. 6PRECh. 13.3 - Prob. 7PRECh. 13.3 - Prob. 8PRECh. 13.3 - Prob. 9PRECh. 13.3 - Prob. 10PRECh. 13.3 - Prob. 11PRECh. 13.3 - Prob. 12PRECh. 13.3 - Prob. 13PRECh. 13.3 - Prob. 14PRECh. 13.3 - Prob. 15PRECh. 13.3 - Prob. 16PRECh. 13.3 - Prob. 17PRECh. 13.3 - Prob. 18PRECh. 13.3 - Prob. 19PRECh. 13.3 - Prob. 20PRECh. 13.3 - Prob. 21PRECh. 13.3 - Prob. 22PRECh. 13.3 - Prob. 23PRECh. 13.3 - Prob. 24PRECh. 13.3 - Prob. 25PRECh. 13.3 - Prob. 26PRECh. 13.3 - Prob. 27PRECh. 13.3 - Prob. 28PRECh. 13.3 - Prob. 29PRECh. 13.3 - Prob. 30PRECh. 13.4 - Given the system 2 x + y = 5 x 2 + y 2 = 50 Solve...Ch. 13.4 - Prob. 2SPCh. 13.4 - Prob. 3SPCh. 13.4 - Prob. 4SPCh. 13.4 - Solve the system by using the substitution method....Ch. 13.4 - Prob. 6SPCh. 13.4 - 1. a. A _______ system of equations in two...Ch. 13.4 - Prob. 2PECh. 13.4 - Prob. 3PECh. 13.4 - Prob. 4PECh. 13.4 - Prob. 5PECh. 13.4 - Prob. 6PECh. 13.4 - Prob. 7PECh. 13.4 - Prob. 8PECh. 13.4 - For Exercises 17–22, sketch each system of...Ch. 13.4 - Prob. 10PECh. 13.4 - Prob. 11PECh. 13.4 - Prob. 12PECh. 13.4 - Prob. 13PECh. 13.4 - Prob. 14PECh. 13.4 - Prob. 15PECh. 13.4 - Prob. 16PECh. 13.4 - Prob. 17PECh. 13.4 - Prob. 18PECh. 13.4 - Prob. 19PECh. 13.4 - Prob. 20PECh. 13.4 - Prob. 21PECh. 13.4 - Prob. 22PECh. 13.4 - Prob. 23PECh. 13.4 - Prob. 24PECh. 13.4 - Prob. 25PECh. 13.4 - Prob. 26PECh. 13.4 - Prob. 27PECh. 13.4 - Prob. 28PECh. 13.4 - Prob. 29PECh. 13.4 - For Exercises 32–48, solve the system of nonlinear...Ch. 13.4 - For Exercises 32–48, solve the system of nonlinear...Ch. 13.4 - Prob. 32PECh. 13.4 - Prob. 33PECh. 13.4 - Prob. 34PECh. 13.4 - Prob. 35PECh. 13.4 - Prob. 36PECh. 13.4 - Prob. 37PECh. 13.4 - Prob. 38PECh. 13.4 - Prob. 39PECh. 13.4 - For Exercises 32–48, solve the system of nonlinear...Ch. 13.4 - Prob. 41PECh. 13.4 - Prob. 42PECh. 13.4 - Prob. 43PECh. 13.4 - Prob. 44PECh. 13.4 - Prob. 45PECh. 13.4 - Prob. 46PECh. 13.4 - Prob. 47PECh. 13.4 - Prob. 48PECh. 13.4 - Prob. 49PECh. 13.4 - Prob. 50PECh. 13.5 - Graph the solution set of the inequality. x 2 + y...Ch. 13.5 - Prob. 2SPCh. 13.5 - Prob. 3SPCh. 13.5 - Prob. 4SPCh. 13.5 - Prob. 1PECh. 13.5 - Prob. 2PECh. 13.5 - Prob. 3PECh. 13.5 - Prob. 4PECh. 13.5 - a. Graph the solution set for x 2 + y 2 ≤ 9 . b....Ch. 13.5 - a. Graph the solution set for x 2 4 + y 2 9 ≥ 1....Ch. 13.5 - 19. a. Graph the solution set for.
b. How would...Ch. 13.5 - 20. a. Graph the solution set for
b. How...Ch. 13.5 - Prob. 9PECh. 13.5 - 22. A coordinate system is placed at the center of...Ch. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - Prob. 13PECh. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - Prob. 15PECh. 13.5 - Prob. 16PECh. 13.5 - Prob. 17PECh. 13.5 - Prob. 18PECh. 13.5 - Prob. 19PECh. 13.5 - Prob. 20PECh. 13.5 - Prob. 21PECh. 13.5 - Prob. 22PECh. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - Prob. 25PECh. 13.5 - For Exercises 38–51, graph the solution set to the...Ch. 13.5 - Prob. 27PECh. 13.5 - Prob. 28PECh. 13.5 - Prob. 29PECh. 13.5 - Prob. 30PECh. 13.5 - Prob. 31PECh. 13.5 - Prob. 32PECh. 13.5 - Prob. 33PECh. 13.5 - Prob. 34PECh. 13.5 - Prob. 35PECh. 13.5 - Prob. 36PECh. 13.5 - Prob. 37PECh. 13.5 - Prob. 38PECh. 13.5 - Prob. 39PECh. 13.5 - Prob. 40PECh. 13.5 - Prob. 41PECh. 13.5 - Prob. 42PECh. 13.5 - Prob. 43PECh. 13 - For Exercises 1-2, find the distance between the...Ch. 13 - For Exercises 1-2, find the distance between the...Ch. 13 - Find x such that ( x , 5 ) is 5 units from ( 2 , 9...Ch. 13 - 4. Find x such that is 3 units from
Ch. 13 - Prob. 5RECh. 13 - For Exercises 5–8, find the center and the radius...Ch. 13 - Prob. 7RECh. 13 - For Exercises 5–8, find the center and the radius...Ch. 13 - Prob. 9RECh. 13 - For Exercises 10–13, write the equation of the...Ch. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - For Exercises 16–17, find the midpoint of the...Ch. 13 - For Exercises 16–17, find the midpoint of the...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 30–31, identify the x- and...Ch. 13 - For Exercises 30–31, identify the x- and...Ch. 13 - For Exercises 32–33, identify the center of the...Ch. 13 - For Exercises 32–33, identify the center of the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 38–39, graph the hyperbola by first...Ch. 13 - For Exercises 38–39, graph the hyperbola by first...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 44–47, a. Identify each equation as...Ch. 13 - For Exercises 44–47,
a. Identify each equation as...Ch. 13 - For Exercises 44–47, a. Identify each equation as...Ch. 13 - For Exercises 44–47,
a. Identify each equation as...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 60–61, graph the solution set to the...Ch. 13 - For Exercises 60–61, graph the solution set to the...Ch. 13 - 1. Use the distance formula to find the distance...Ch. 13 - Prob. 2TCh. 13 - Prob. 3TCh. 13 - Prob. 4TCh. 13 - 5. Find the center of the circle that has a...Ch. 13 - Determine the vertex and the equation of the axis...Ch. 13 - Write the equation in standard form y = a ( x − h...Ch. 13 - 8. Graph the ellipse.
Ch. 13 - 9. Graph the ellipse.
Ch. 13 - Graph the hyperbola. y 2 − x 2 4 = 1Ch. 13 - For Exercises 11–12, solve the system and identify...Ch. 13 - For Exercises 11–12, solve the system and identify...Ch. 13 - Describe the circumstances in which a nonlinear...Ch. 13 - 14. Solve the system by using either the...Ch. 13 - For Exercises 15–18, graph the solution...Ch. 13 - For Exercises 15–18, graph the solution...Ch. 13 - For Exercises 15–18, graph the solution set. x < y...Ch. 13 - For Exercises 15–18, graph the solution set. y < x...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- In Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. 35. (x – 2) = 8(y – 1) 37. (x + 1) = -8(y + 1) 39. (y + 3) = 12(x + 1) 41. (y + 1) = -&r 36. (x + 2) = 4(y + 1) 38. (x + 2) = -8(y + 2) 40. (y + 4)2 = 12(x + 2) %3D %3D 42. (y - 1) = -&rarrow_forwardDescribe how the parabolas y = x2 + bx change as b changes from -oo to oo.arrow_forwardIn Exercises 5–12, find the standard form of the equation of each hyperbola satisfying the given conditions. 5. Foci: (0, –3), (0, 3); vertices: (0, –1), (0, 1) 6. Foci: (0, –6), (0, 6); vertices: (0, -2), (0, 2) 7. Foci: (-4, 0), (4, 0); vertices: (-3, 0), (3,0) 8. Foci: (-7, 0), (7, 0); vertices: (-5, 0), (5,0) 9. Endpoints of transverse axis: (0, -6), (0, 6); asymptote: y = 2x 10. Endpoints of transverse axis: (-4,0), (4, 0); asymptote: y = 2r 11. Center: (4, -2); Focus: (7, -2); vertex: (6, -2) 12. Center: (-2, 1); Focus: (-2, 6); vertex: (-2, 4)arrow_forward
- 1. A parabola has equation - 12x + y² – 24 = 0. Write the equation in standard form.arrow_forwardFind the equation of the parabola whose axis is parallel to the x-axis and passes through the points (3,1), (0,0), and (8,-4).arrow_forwardWhat is the center of an ellipse 64x2 + 25y2 = 1600? a.2,3 b. 1,1 c. 4,2 d. 0,0arrow_forward
- supply the direction of the opening, vertex, focus, ends of latus rectum, and graph 2y2y^2 + x + 8y − 4 = 0arrow_forwardFind the equation of the parabola with V(-2,-3) and a directrex y=-7arrow_forwardWrite an equation for the parabola with axis horizonal, vertex on the y-axis, and containing the points (2,1) and (18, 3).arrow_forward
- Write the following equation x2 +9y² + 10x-18y+ 25 = 0 in vertex form. Identify the type of conic section and its direction. Use the paperclip button below to attach files. * Student can enter max 2000 characters XGBIU EQ Q Search -- F10 G 09 F12 Insertarrow_forwardGraph the hyperbola given by 9x² -y² - 72x – 4y+ 131 = 0.arrow_forward2. Obtain the graph of the parabola y = -x² + 4x using transformations of the graph of y = x². Explain each step.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
08 - Conic Sections - Hyperbolas, Part 1 (Graphing, Asymptotes, Hyperbola Equation, Focus); Author: Math and Science;https://www.youtube.com/watch?v=Ryj0DcdGPXo;License: Standard YouTube License, CC-BY