BEGINNING+INTERM.ALG.(LL) >CUSTOM PKG.<
6th Edition
ISBN: 9781266148941
Author: Miller
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.1, Problem 67PE
To determine
To calculate: The midpoint of line segment with given points
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Exercises 123–126: Predict the number of tick marks on
the positive x-axis and the positive y-axis. Then show the
viewing rectangle on your graphing calculator.
123. Standard viewing rectangle
124. [-4.7, 4.7, 1] by [-3.1, 3.1, 1]
125. (0, 100, 10] by [-50, 50, 10]
126. [-30, 30, 5] by (-20, 20, 5]
1–10, translate each statement of variation into an equation, and use k as the constant of variation.
7. The surface area (S) of a cube varies directly as the square of the length of an edge (e).
Kaufmann, Jerome E.; Schwitters, Karen L.. Intermediate Algebra (p. 487). Cengage Learning. Kindle Edition.
Find the point equidistant from the points (0, 0, 0), (0, 4, 0), (3, 0, 0), and (2, 2, -3).
Chapter 13 Solutions
BEGINNING+INTERM.ALG.(LL) >CUSTOM PKG.<
Ch. 13.1 - Find the distance between the points ( − 4 , − 2 )...Ch. 13.1 - Prob. 2SPCh. 13.1 - Prob. 3SPCh. 13.1 - Prob. 4SPCh. 13.1 - Prob. 5SPCh. 13.1 - Prob. 6SPCh. 13.1 - Prob. 7SPCh. 13.1 - Prob. 8SPCh. 13.1 - Prob. 1PECh. 13.1 - Prob. 2PE
Ch. 13.1 - Prob. 3PECh. 13.1 - Prob. 4PECh. 13.1 - Prob. 5PECh. 13.1 - Prob. 6PECh. 13.1 - Prob. 7PECh. 13.1 - Prob. 8PECh. 13.1 - Prob. 9PECh. 13.1 - Prob. 10PECh. 13.1 - Prob. 11PECh. 13.1 - Prob. 12PECh. 13.1 - Prob. 13PECh. 13.1 - Prob. 14PECh. 13.1 - Prob. 15PECh. 13.1 - Prob. 16PECh. 13.1 - Prob. 17PECh. 13.1 - Prob. 18PECh. 13.1 - Prob. 19PECh. 13.1 - Prob. 20PECh. 13.1 - Prob. 21PECh. 13.1 - Prob. 22PECh. 13.1 - Prob. 23PECh. 13.1 - Prob. 24PECh. 13.1 - Prob. 25PECh. 13.1 - Prob. 26PECh. 13.1 - Prob. 27PECh. 13.1 - Prob. 28PECh. 13.1 - Prob. 29PECh. 13.1 - Prob. 30PECh. 13.1 - Prob. 31PECh. 13.1 - Prob. 32PECh. 13.1 - Prob. 33PECh. 13.1 - Prob. 34PECh. 13.1 - Prob. 35PECh. 13.1 - Prob. 36PECh. 13.1 - Prob. 37PECh. 13.1 - Prob. 38PECh. 13.1 - Prob. 39PECh. 13.1 - Prob. 40PECh. 13.1 - Prob. 41PECh. 13.1 - Prob. 42PECh. 13.1 - Prob. 43PECh. 13.1 - Prob. 44PECh. 13.1 - Prob. 45PECh. 13.1 - Prob. 46PECh. 13.1 - Prob. 47PECh. 13.1 - Prob. 48PECh. 13.1 - For Exercises 49–54, write an equation that...Ch. 13.1 - Prob. 50PECh. 13.1 - Prob. 51PECh. 13.1 - Prob. 52PECh. 13.1 - Prob. 53PECh. 13.1 - Prob. 54PECh. 13.1 - Prob. 55PECh. 13.1 - Prob. 56PECh. 13.1 - Prob. 57PECh. 13.1 - Prob. 58PECh. 13.1 - Prob. 59PECh. 13.1 - Prob. 60PECh. 13.1 - Prob. 61PECh. 13.1 - Prob. 62PECh. 13.1 - Prob. 63PECh. 13.1 - Prob. 64PECh. 13.1 - Prob. 65PECh. 13.1 - Prob. 66PECh. 13.1 - Prob. 67PECh. 13.1 - Prob. 68PECh. 13.1 - Prob. 69PECh. 13.1 - For Exercises 65–72, find the midpoint of the line...Ch. 13.1 - For Exercise 65-72, find the midpoint of the line...Ch. 13.1 - For Exercise 65-72, find the midpoint of the line...Ch. 13.1 - Prob. 73PECh. 13.1 - Prob. 74PECh. 13.1 - For Exercises 75–78, the two given points are...Ch. 13.1 - Prob. 76PECh. 13.1 - Prob. 77PECh. 13.1 - Prob. 78PECh. 13.1 - Prob. 79PECh. 13.1 - Prob. 80PECh. 13.1 - Prob. 81PECh. 13.1 - Prob. 82PECh. 13.1 - Prob. 83PECh. 13.1 - Prob. 84PECh. 13.1 - Prob. 85PECh. 13.1 - Prob. 86PECh. 13.1 - Prob. 87PECh. 13.1 - Prob. 88PECh. 13.2 - Prob. 1SPCh. 13.2 - Prob. 2SPCh. 13.2 - Prob. 3SPCh. 13.2 - Prob. 4SPCh. 13.2 - Prob. 5SPCh. 13.2 - Prob. 6SPCh. 13.2 - Prob. 7SPCh. 13.2 - Prob. 8SPCh. 13.2 - Prob. 9SPCh. 13.2 - Prob. 10SPCh. 13.2 - Prob. 11SPCh. 13.2 - 1. a. A circle, a parabola, an ellipse, and a...Ch. 13.2 - Prob. 2PECh. 13.2 - Prob. 3PECh. 13.2 - Prob. 4PECh. 13.2 - Prob. 5PECh. 13.2 - Prob. 6PECh. 13.2 - Prob. 7PECh. 13.2 - Prob. 8PECh. 13.2 - Prob. 9PECh. 13.2 - Prob. 10PECh. 13.2 - Prob. 11PECh. 13.2 - Prob. 12PECh. 13.2 - Prob. 13PECh. 13.2 - Prob. 14PECh. 13.2 - Prob. 15PECh. 13.2 - Prob. 16PECh. 13.2 - Prob. 17PECh. 13.2 - Prob. 18PECh. 13.2 - Prob. 19PECh. 13.2 - For Exercises 25–33, determine the vertex by using...Ch. 13.2 - Prob. 21PECh. 13.2 - Prob. 22PECh. 13.2 - Prob. 23PECh. 13.2 - Prob. 24PECh. 13.2 - Prob. 25PECh. 13.2 - Prob. 26PECh. 13.2 - Prob. 27PECh. 13.2 - Prob. 28PECh. 13.2 - Prob. 29PECh. 13.2 - Prob. 30PECh. 13.2 - Prob. 31PECh. 13.2 - Prob. 32PECh. 13.2 - Prob. 33PECh. 13.2 - Prob. 34PECh. 13.2 - Prob. 35PECh. 13.2 - Prob. 36PECh. 13.2 - Prob. 37PECh. 13.2 - Prob. 38PECh. 13.2 - Prob. 39PECh. 13.2 - Prob. 40PECh. 13.2 - Prob. 41PECh. 13.2 - Prob. 42PECh. 13.2 - Prob. 43PECh. 13.3 - Prob. 1SPCh. 13.3 - Prob. 2SPCh. 13.3 - Prob. 3SPCh. 13.3 - Prob. 4SPCh. 13.3 - Prob. 5SPCh. 13.3 - Prob. 1PECh. 13.3 - Prob. 2PECh. 13.3 - Prob. 3PECh. 13.3 - Prob. 4PECh. 13.3 - Prob. 5PECh. 13.3 - Prob. 6PECh. 13.3 - Prob. 7PECh. 13.3 - Prob. 8PECh. 13.3 - Prob. 9PECh. 13.3 - Prob. 10PECh. 13.3 - Prob. 11PECh. 13.3 - Prob. 12PECh. 13.3 - Prob. 13PECh. 13.3 - Prob. 14PECh. 13.3 - Prob. 15PECh. 13.3 - Prob. 16PECh. 13.3 - Prob. 17PECh. 13.3 - Prob. 18PECh. 13.3 - Prob. 19PECh. 13.3 - Prob. 20PECh. 13.3 - Prob. 21PECh. 13.3 - Prob. 22PECh. 13.3 - Prob. 23PECh. 13.3 - Prob. 24PECh. 13.3 - Prob. 25PECh. 13.3 - Prob. 26PECh. 13.3 - Prob. 27PECh. 13.3 - Prob. 28PECh. 13.3 - Prob. 29PECh. 13.3 - Prob. 30PECh. 13.3 - Prob. 31PECh. 13.3 - Prob. 32PECh. 13.3 - For Exercises 33–40, use the equation in standard...Ch. 13.3 - Prob. 34PECh. 13.3 - Prob. 35PECh. 13.3 - Prob. 36PECh. 13.3 - Prob. 37PECh. 13.3 - Prob. 38PECh. 13.3 - Prob. 39PECh. 13.3 - Prob. 40PECh. 13.3 - Prob. 41PECh. 13.3 - Prob. 42PECh. 13.3 - Prob. 43PECh. 13.3 - Prob. 44PECh. 13.3 - Prob. 45PECh. 13.3 - Prob. 46PECh. 13.3 - Prob. 47PECh. 13.3 - Prob. 48PECh. 13.3 - Prob. 49PECh. 13.3 - Prob. 50PECh. 13.3 - Prob. 51PECh. 13.3 - Prob. 52PECh. 13.3 - Prob. 1PRECh. 13.3 - For Exercises 1–8, identify the formula. x 2 a 2 +...Ch. 13.3 - Prob. 3PRECh. 13.3 - Prob. 4PRECh. 13.3 - Prob. 5PRECh. 13.3 - Prob. 6PRECh. 13.3 - Prob. 7PRECh. 13.3 - Prob. 8PRECh. 13.3 - Prob. 9PRECh. 13.3 - Prob. 10PRECh. 13.3 - Prob. 11PRECh. 13.3 - Prob. 12PRECh. 13.3 - Prob. 13PRECh. 13.3 - Prob. 14PRECh. 13.3 - Prob. 15PRECh. 13.3 - Prob. 16PRECh. 13.3 - Prob. 17PRECh. 13.3 - Prob. 18PRECh. 13.3 - Prob. 19PRECh. 13.3 - Prob. 20PRECh. 13.3 - Prob. 21PRECh. 13.3 - Prob. 22PRECh. 13.3 - Prob. 23PRECh. 13.3 - Prob. 24PRECh. 13.3 - Prob. 25PRECh. 13.3 - Prob. 26PRECh. 13.3 - Prob. 27PRECh. 13.3 - Prob. 28PRECh. 13.3 - Prob. 29PRECh. 13.3 - Prob. 30PRECh. 13.4 - Given the system 2 x + y = 5 x 2 + y 2 = 50 Solve...Ch. 13.4 - Prob. 2SPCh. 13.4 - Prob. 3SPCh. 13.4 - Prob. 4SPCh. 13.4 - Solve the system by using the substitution method....Ch. 13.4 - Prob. 6SPCh. 13.4 - 1. a. A _______ system of equations in two...Ch. 13.4 - Prob. 2PECh. 13.4 - Prob. 3PECh. 13.4 - Prob. 4PECh. 13.4 - Prob. 5PECh. 13.4 - Prob. 6PECh. 13.4 - Prob. 7PECh. 13.4 - Prob. 8PECh. 13.4 - For Exercises 17–22, sketch each system of...Ch. 13.4 - Prob. 10PECh. 13.4 - Prob. 11PECh. 13.4 - Prob. 12PECh. 13.4 - Prob. 13PECh. 13.4 - Prob. 14PECh. 13.4 - Prob. 15PECh. 13.4 - Prob. 16PECh. 13.4 - Prob. 17PECh. 13.4 - Prob. 18PECh. 13.4 - Prob. 19PECh. 13.4 - Prob. 20PECh. 13.4 - Prob. 21PECh. 13.4 - Prob. 22PECh. 13.4 - Prob. 23PECh. 13.4 - Prob. 24PECh. 13.4 - Prob. 25PECh. 13.4 - Prob. 26PECh. 13.4 - Prob. 27PECh. 13.4 - Prob. 28PECh. 13.4 - Prob. 29PECh. 13.4 - For Exercises 32–48, solve the system of nonlinear...Ch. 13.4 - For Exercises 32–48, solve the system of nonlinear...Ch. 13.4 - Prob. 32PECh. 13.4 - Prob. 33PECh. 13.4 - Prob. 34PECh. 13.4 - Prob. 35PECh. 13.4 - Prob. 36PECh. 13.4 - Prob. 37PECh. 13.4 - Prob. 38PECh. 13.4 - Prob. 39PECh. 13.4 - For Exercises 32–48, solve the system of nonlinear...Ch. 13.4 - Prob. 41PECh. 13.4 - Prob. 42PECh. 13.4 - Prob. 43PECh. 13.4 - Prob. 44PECh. 13.4 - Prob. 45PECh. 13.4 - Prob. 46PECh. 13.4 - Prob. 47PECh. 13.4 - Prob. 48PECh. 13.4 - Prob. 49PECh. 13.4 - Prob. 50PECh. 13.5 - Graph the solution set of the inequality. x 2 + y...Ch. 13.5 - Prob. 2SPCh. 13.5 - Prob. 3SPCh. 13.5 - Prob. 4SPCh. 13.5 - Prob. 1PECh. 13.5 - Prob. 2PECh. 13.5 - Prob. 3PECh. 13.5 - Prob. 4PECh. 13.5 - a. Graph the solution set for x 2 + y 2 ≤ 9 . b....Ch. 13.5 - a. Graph the solution set for x 2 4 + y 2 9 ≥ 1....Ch. 13.5 - 19. a. Graph the solution set for.
b. How would...Ch. 13.5 - 20. a. Graph the solution set for
b. How...Ch. 13.5 - Prob. 9PECh. 13.5 - 22. A coordinate system is placed at the center of...Ch. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - Prob. 13PECh. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - Prob. 15PECh. 13.5 - Prob. 16PECh. 13.5 - Prob. 17PECh. 13.5 - Prob. 18PECh. 13.5 - Prob. 19PECh. 13.5 - Prob. 20PECh. 13.5 - Prob. 21PECh. 13.5 - Prob. 22PECh. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - For Exercises 23–37, graph the solution set. (See...Ch. 13.5 - Prob. 25PECh. 13.5 - For Exercises 38–51, graph the solution set to the...Ch. 13.5 - Prob. 27PECh. 13.5 - Prob. 28PECh. 13.5 - Prob. 29PECh. 13.5 - Prob. 30PECh. 13.5 - Prob. 31PECh. 13.5 - Prob. 32PECh. 13.5 - Prob. 33PECh. 13.5 - Prob. 34PECh. 13.5 - Prob. 35PECh. 13.5 - Prob. 36PECh. 13.5 - Prob. 37PECh. 13.5 - Prob. 38PECh. 13.5 - Prob. 39PECh. 13.5 - Prob. 40PECh. 13.5 - Prob. 41PECh. 13.5 - Prob. 42PECh. 13.5 - Prob. 43PECh. 13 - For Exercises 1-2, find the distance between the...Ch. 13 - For Exercises 1-2, find the distance between the...Ch. 13 - Find x such that ( x , 5 ) is 5 units from ( 2 , 9...Ch. 13 - 4. Find x such that is 3 units from
Ch. 13 - Prob. 5RECh. 13 - For Exercises 5–8, find the center and the radius...Ch. 13 - Prob. 7RECh. 13 - For Exercises 5–8, find the center and the radius...Ch. 13 - Prob. 9RECh. 13 - For Exercises 10–13, write the equation of the...Ch. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - For Exercises 16–17, find the midpoint of the...Ch. 13 - For Exercises 16–17, find the midpoint of the...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 18–21, determine whether the axis of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 22–25, determine the coordinates of...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 26–29, write the equation in...Ch. 13 - For Exercises 30–31, identify the x- and...Ch. 13 - For Exercises 30–31, identify the x- and...Ch. 13 - For Exercises 32–33, identify the center of the...Ch. 13 - For Exercises 32–33, identify the center of the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 34–37, determine whether the...Ch. 13 - For Exercises 38–39, graph the hyperbola by first...Ch. 13 - For Exercises 38–39, graph the hyperbola by first...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 40–43, identify the equations as...Ch. 13 - For Exercises 44–47, a. Identify each equation as...Ch. 13 - For Exercises 44–47,
a. Identify each equation as...Ch. 13 - For Exercises 44–47, a. Identify each equation as...Ch. 13 - For Exercises 44–47,
a. Identify each equation as...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 48–53, solve the system of nonlinear...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 54–59, graph the solution set to the...Ch. 13 - For Exercises 60–61, graph the solution set to the...Ch. 13 - For Exercises 60–61, graph the solution set to the...Ch. 13 - 1. Use the distance formula to find the distance...Ch. 13 - Prob. 2TCh. 13 - Prob. 3TCh. 13 - Prob. 4TCh. 13 - 5. Find the center of the circle that has a...Ch. 13 - Determine the vertex and the equation of the axis...Ch. 13 - Write the equation in standard form y = a ( x − h...Ch. 13 - 8. Graph the ellipse.
Ch. 13 - 9. Graph the ellipse.
Ch. 13 - Graph the hyperbola. y 2 − x 2 4 = 1Ch. 13 - For Exercises 11–12, solve the system and identify...Ch. 13 - For Exercises 11–12, solve the system and identify...Ch. 13 - Describe the circumstances in which a nonlinear...Ch. 13 - 14. Solve the system by using either the...Ch. 13 - For Exercises 15–18, graph the solution...Ch. 13 - For Exercises 15–18, graph the solution...Ch. 13 - For Exercises 15–18, graph the solution set. x < y...Ch. 13 - For Exercises 15–18, graph the solution set. y < x...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- A (1,3) reflected in the x-axisarrow_forwardThe mean of y,y+3,1,y+4,y+6,y+1 is 7.Find the value of Cube of (y+5).arrow_forwardWorld Military Expenditure The following chart shows total military and arms trade expenditure from 2011–2020 (t = 1 represents 2011). †A bar graph titled "World military expenditure" has a horizontal t-axis labeled "Year since 2010" and a vertical axis labeled "$ (billions)". The bar graph has 10 bars. Each bar is associated with a label and an approximate value as listed below. 1: 1,800 billion dollars 2: 1,775 billion dollars 3: 1,750 billion dollars 4: 1,730 billion dollars 5: 1,760 billion dollars 6: 1,760 billion dollars 7: 1,850 billion dollars 8: 1,900 billion dollars 9: 1,950 billion dollars 10: 1,980 billion dollars (a) If you want to model the expenditure figures with a function of the form f(t) = at2 + bt + c, would you expect the coefficient a to be positive or negative? Why? HINT [See "Features of a Parabola" in this section.] We would expect the coefficient to be positive because the curve is concave up. We would expect the coefficient to be negative because the…arrow_forward
- Approximate the function that represents the data (2, –2), (4,2), (5,3) by a cubic spline.arrow_forwardShow how to find the equation otthe containing the points (2,1,-2), (-3,-8, 4) & 12,3,1).arrow_forwardGive your answers in the form ax + by = c. 1 a AB: y = 2x+ 11; midpoint (-4, 3) b AB: y =-3x + 7; midpoint (6, -11) 2 a AB : y=-x-10; midpoint (-12, 6) 3 b AB : y =x+1; midpoint (10, 5) b AB: 3x – 4y = 9; midpoint (-1, -3) 9 7 4' 2 3. a AB: 4x + 5y = 13; midpoint (2, 1) 4 a AB: 6x – 24y =-37; midpoint b AB: 4x + 12y = 33; midpoint For questions 5 to 8, use the method demonstrated in Worked Example 14.5 to find the equation of the perpendicular bisector of the line segment connecting the given points. Give your answers in the form y=mx +c. 5 a (5, 2) and (13, 6) b (3, 1) and (21, 7) 6 a (-4, 5) and (5, -1) b (-2, -3) and (2, 7) (17 1) a and 21 b 4 and (9 34 7 (2'5, 23 31 and 7 17 (11 13 and 8. a 9 For each of the following Voronoi diagrams, give all the examples of the: i sites iii finite edges ii vertices iv finite cells.arrow_forward
- Show that 1 -2 = R³. span 3 1arrow_forwardDetermine the midpoint C of the line segment AB connecting A (-3, 5.2) & B(4.6, -2.2).arrow_forwardU.S. Population The number of White non-Hispanicindividuals in the U.S. civilian non-institutional population 16 years and older was 153.1 million in 2000and is projected to be 169.4 million in 2050.(Source: U.S. Census Bureau)a. Find the average annual rate of change in population during the period 2000–2050, with the appropriate units.b. Use the slope from part (a) and the population in2000 to write the equation of the line associatedwith 2000 and 2050.c. What does this model project the population to bein 2020?arrow_forward
- Write v as a linear combination of u and w, if possible, where u = (3, 2) and w = (3, -1). (Enter your answer in terms of u and w. If not possible, enter IMPOSSIBLE.) v = (-3, -2) V V =arrow_forwardWhich point is farther from the origin, (3, -1, 2) or (0, 0, -4)?arrow_forwardPls help ASAParrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
HOW TO FIND DETERMINANT OF 2X2 & 3X3 MATRICES?/MATRICES AND DETERMINANTS CLASS XII 12 CBSE; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=bnaKGsLYJvQ;License: Standard YouTube License, CC-BY
What are Determinants? Mathematics; Author: Edmerls;https://www.youtube.com/watch?v=v4_dxD4jpgM;License: Standard YouTube License, CC-BY