EBK THERMODYNAMICS: AN ENGINEERING APPR
9th Edition
ISBN: 8220106796979
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13.3, Problem 31P
To determine
The mass fraction of the gas
The mass fraction of the gas
The mass fraction of the gas
The molar mass of the gas mixture,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a closed container of constant volume, there is a gas mixture of 10kmol 02 and 20kmol
Co2. The pressure and temperature of the mixture are 150 kPa and 300 K, respectively.
Calculate the volume of the container
www
The viscosity values for the H2 and Freon-12 gas mixtures at 25 ° C and 1 atm pressure and the mole fractions of the mixture are given in the table below. For H2 and Freon-12, calculate the viscosity values of the mixture for 3 different compositions using pure viscosity values.
H2 Mol Frac.
0,00
0,25
0,50
0,75
1,00
Viscosity (µ) x 106
(poise)
124,0
128,1
131,9
135,1
88,4
The pressure and temperature of a mixture of equal masses of hydrogen are 120 kPa and 27 degree celcius. The gas constants of hydrogen and oxgen are 4.125 and 0.2598 kJ/kg-K respectively. Calculate the partial pressure of ocygen in Kpa.
Chapter 13 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 13.3 - What are mass and mole fractions?Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 7PCh. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - A gas mixture consists of 20 percent O2, 30...Ch. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - Prob. 18PCh. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Prob. 22PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Prob. 24PCh. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - A gas mixture at 300 K and 200 kPa consists of 1...Ch. 13.3 - Prob. 29PCh. 13.3 - Separation units often use membranes, absorbers,...Ch. 13.3 - Prob. 31PCh. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - An engineer has proposed mixing extra oxygen with...Ch. 13.3 - A rigid tank contains 0.5 kmol of Ar and 2 kmol of...Ch. 13.3 - A mixture of gases consists of 0.9 kg of oxygen,...Ch. 13.3 - Prob. 37PCh. 13.3 - One pound-mass of a gas whose density is 0.001...Ch. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 43PCh. 13.3 - Prob. 44PCh. 13.3 - Prob. 45PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 47PCh. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - Prob. 50PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - A mixture of nitrogen and carbon dioxide has a...Ch. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - A mixture of gases consists of 0.1 kg of oxygen, 1...Ch. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - An insulated rigid tank is divided into two...Ch. 13.3 - Prob. 59PCh. 13.3 - A mixture of 65 percent N2 and 35 percent CO2...Ch. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 68PCh. 13.3 - Prob. 69PCh. 13.3 - The gas passing through the turbine of a simple...Ch. 13.3 - Prob. 71PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 79PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Is it possible for an adiabatic liquid-vapor...Ch. 13.3 - Prob. 84PCh. 13.3 - Prob. 85RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - A mixture of gases is assembled by first filling...Ch. 13.3 - Prob. 90RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 95RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - Prob. 101RPCh. 13.3 - Prob. 102FEPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 105FEPCh. 13.3 - Prob. 106FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEPCh. 13.3 - Prob. 111FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A gas mixture consists of methane (CH4) and carbon dioxide (CO2). The mass fraction of CH4 is 0.84. The total mass is 10 kg. Determine the gas constant of the mixture in kJ/kg-K. Use four decimal places for your final answer.arrow_forwardA gas mixture is 30% Gas A, 20% Gas B, 25 % Gas C and 25% Gas D. Determine the partial pressure of Gas B when the total pressure of the gas mixture is 800 psi.arrow_forwardDetermine the mole fractions of a gas mixture that consists of 75% CH4 and 25% CO₂ by mass. Also determine the gas constant of the mixture.arrow_forward
- A gas mixture has the following composition on a mole basis: 60 percent N₂ and 40 percent CO2. Determine the gravimetric analysis of the mixture, its molar mass, and the gas constant. The universal gas constant is Ru= 8.314 kJ/kmol-K. Use the table containing the molar mass, gas constant, and critical-point properties. The mass fraction of N₂ is 48.8 %. The mass fraction of CO2 is 51.2 %. The molar mass of the mixture is The gas constant of the mixture is 197 kg/kmol. 197 kJ/kg-K.arrow_forwardA vessel contains at 1 bar and 20°C a mixture of 1 mole of CO2 and 4 moles of air. Calculate for the mixture: (i) The masses of CO2, O2 and N2; (ii) The percentage carbon content by mass; (iii) The apparent molecular weight and the gas constant for the mixture; (iv) The specific volume of the mixture; (v) If the mixture is heated at constant pressure to 100°C, find the changes in internal energy, enthalpy and entropy of the mixture.arrow_forwardA vessel contains at 1 bar and 20°C a mixture of 1 mole of CO2 and 4 moles of air. Calculate for the mixture: (i) The masses of CO2, Oz and N2; (ii) The percentage carbon content by mass; (iii) The apparent molecular weight and the gas constant for the mixture; (iv) The specific volume of the mixture; (v) If the mixture is heated at constant pressure to 100°C, find the changes in internal energy, enthalpy and entropy of the mixture.arrow_forward
- The mass fractions of a mixture of gases are 10 percent nitrogen, 3 percent helium, 55 percent methane, and 32 percent ethane. Determine the mole fractions of each constituent, the mixture’s apparent molecular weight, the partial pressure of each constituent when the mixture pressure is 1200 kPa, and the apparent specific heats of the mixture when the mixture is at the room temperature. The universal gas constant is Ru = 8.314 kJ/kmol·K. Use the table containing the molar mass, gas constant, and critical-point properties and the table containing the ideal-gas specific heats of various common gases. The mole fraction of nitrogen is _______. The mole fraction of helium is _____. The mole fraction of methane is ._______ The mole fraction of ethane is ______. The apparent molecular weight of the mixture is ______kg/kmol. The partial pressure of nitrogen is ______kPa. The partial pressure of helium is _____kPa. The partial pressure of methane is _____kPa. The partial…arrow_forwardA gaseous mixture of methane, ethane and propane has their percent volume of 38%, 42% and 20% respectively. What is the mass percentage of methane in the mixture?arrow_forwardThe gas constant of CO2, N2, and He are 0.1889, 0.2968, and 2.077 kJ/kg-°K respectively. The three are mixed with 0.4 kg CO2, 0.7 kg, N2, and 0.05 kg He. The mixture has a temperature of 35°C and pressure of 180 kPa. Calculate the volume of the mixture in cubic meters. 0.1598 0.6625 0.7856arrow_forward
- please help me with thisarrow_forwardProblem 13.033 Specific Heat and Molecular Weight The volumetric analysis of a mixture of gases is 30 percent oxygen, 40 percent nitrogen, 10 percent carbon dioxide, and 20 percent methane. Calculate the apparent specific heats and molecular weight of this mixture of gases. The universal gas constant is Ru = 8.314 kJ/kmol-K. Use the table containing the molar mass, gas constant, and critical-point properties and the table containing the ideal-gas specific heats of various common gases. The apparent molecular weight of this mixture of gases is The constant-pressure specific heat of the mixture is The constant-volume specific heat of the mixture is kg/kmol. kJ/kg-K. kJ/kg-K.arrow_forwardA mixture of hydrocarbon gases is composed of 60 percent methane, 25 percent propane, and 15 percent butane by volume. Determine the apparent gas constant of the mixture.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY