EBK THERMODYNAMICS: AN ENGINEERING APPR
9th Edition
ISBN: 8220106796979
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 13.3, Problem 54P
The mass fractions of a mixture of gases are 15 percent nitrogen, 5 percent helium, 60 percent methane, and 20 percent ethane. This mixture is compressed from 20 psia and 100°F in an isentropic process to 200 psia. Determine the final mixture temperature and the work required per unit mass of the mixture.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A mixture of nitrogen and carbon dioxide has a carbon dioxide mass fraction of 50 percent. This mixture is heated at constant pressure
in a closed system from 120 kPa and 30°C to 220°C. Calculate the work produced during this heating in kJ/kg. The universal gas
constant is Ru= 8.314 kJ/kmol-K. Use the table containing the molar mass, gas constant, and critical-point properties.
The work produced during this heating is
kJ/kg.
A mixture of hydrocarbon gases is composed of 60 percent methane, 25 percent propane, and 15 percent butane by weight. This
mixture is compressed from 100 kPa and 20°C to 1400 kPa in a reversible, isothermal, steady-flow compressor. Calculate the work and
heat transfer for this compression per unit mass of the mixture. The universal gas constant is R₁ = 8.314 kPa-m³/kmol-K. Use the table
containing the molar mass, gas constant, and critical-point properties.
P₂
60% CH4
25% C₂H₂
15% C₂H10
(by mass)
100 kPa
20°C
W
The work input for this compression per unit mass of the mixture is
The heat transfer for this compression per unit mass of the mixture is
kJ/kg.
kJ/kg.
A rigid tank that contains 5.2 kg of N2 at 25°C and 550 kPa is connected to another rigid tank that contains 7.2 kg of O2 at 25°C and
150 kPa. The valve connecting the two tanks is opened, and the two gases are allowed to mix. If the final mixture temperature is 25°C,
determine the volume of each tank and the final mixture pressure. The gas constants of N2 and O2 are 0.2968 and
0.2598 kPa-m³/kg-K, respectively. The universal gas constant is 8.314 kPa-m³/kmol-K. Use the table containing the molar mass, gas
constant, and critical-point properties.
N₂
25°C
550 kPa
The volume of the N2 tank is
The volume of the O2 tank is
The final mixture pressure is
m3
Im³
kPa.
0₂
25°C
150 kPa
Chapter 13 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 13.3 - What are mass and mole fractions?Ch. 13.3 - Consider a mixture of several gases of identical...Ch. 13.3 - The sum of the mole fractions for an ideal-gas...Ch. 13.3 - Somebody claims that the mass and mole fractions...Ch. 13.3 - Consider a mixture of two gases. Can the apparent...Ch. 13.3 - What is the apparent molar mass for a gas mixture?...Ch. 13.3 - Prob. 7PCh. 13.3 - The composition of moist air is given on a molar...Ch. 13.3 - Prob. 9PCh. 13.3 - Prob. 10P
Ch. 13.3 - A gas mixture consists of 20 percent O2, 30...Ch. 13.3 - Prob. 12PCh. 13.3 - Prob. 13PCh. 13.3 - Consider a mixture of two gases A and B. Show that...Ch. 13.3 - Is a mixture of ideal gases also an ideal gas?...Ch. 13.3 - Express Daltons law of additive pressures. Does...Ch. 13.3 - Express Amagats law of additive volumes. Does this...Ch. 13.3 - Prob. 18PCh. 13.3 - How is the P-v-T behavior of a component in an...Ch. 13.3 - Prob. 20PCh. 13.3 - Prob. 21PCh. 13.3 - Prob. 22PCh. 13.3 - Consider a rigid tank that contains a mixture of...Ch. 13.3 - Prob. 24PCh. 13.3 - Is this statement correct? The temperature of an...Ch. 13.3 - Is this statement correct? The volume of an...Ch. 13.3 - Is this statement correct? The pressure of an...Ch. 13.3 - A gas mixture at 300 K and 200 kPa consists of 1...Ch. 13.3 - Prob. 29PCh. 13.3 - Separation units often use membranes, absorbers,...Ch. 13.3 - Prob. 31PCh. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - An engineer has proposed mixing extra oxygen with...Ch. 13.3 - A rigid tank contains 0.5 kmol of Ar and 2 kmol of...Ch. 13.3 - A mixture of gases consists of 0.9 kg of oxygen,...Ch. 13.3 - Prob. 37PCh. 13.3 - One pound-mass of a gas whose density is 0.001...Ch. 13.3 - A 30 percent (by mass) ethane and 70 percent...Ch. 13.3 - Prob. 40PCh. 13.3 - Prob. 41PCh. 13.3 - A rigid tank that contains 2 kg of N2 at 25C and...Ch. 13.3 - Prob. 43PCh. 13.3 - Prob. 44PCh. 13.3 - Prob. 45PCh. 13.3 - Is the total internal energy of an ideal-gas...Ch. 13.3 - Prob. 47PCh. 13.3 - Prob. 48PCh. 13.3 - Prob. 49PCh. 13.3 - Prob. 50PCh. 13.3 - The volumetric analysis of a mixture of gases is...Ch. 13.3 - A mixture of nitrogen and carbon dioxide has a...Ch. 13.3 - The mass fractions of a mixture of gases are 15...Ch. 13.3 - A mixture of gases consists of 0.1 kg of oxygen, 1...Ch. 13.3 - An insulated tank that contains 1 kg of O2at 15C...Ch. 13.3 - An insulated rigid tank is divided into two...Ch. 13.3 - Prob. 59PCh. 13.3 - A mixture of 65 percent N2 and 35 percent CO2...Ch. 13.3 - Prob. 62PCh. 13.3 - Prob. 63PCh. 13.3 - Prob. 66PCh. 13.3 - Prob. 67PCh. 13.3 - Prob. 68PCh. 13.3 - Prob. 69PCh. 13.3 - The gas passing through the turbine of a simple...Ch. 13.3 - Prob. 71PCh. 13.3 - A pistoncylinder device contains 6 kg of H2 and 21...Ch. 13.3 - Prob. 73PCh. 13.3 - Prob. 74PCh. 13.3 - Prob. 75PCh. 13.3 - Prob. 76PCh. 13.3 - Prob. 77PCh. 13.3 - Prob. 78PCh. 13.3 - Prob. 79PCh. 13.3 - Prob. 81PCh. 13.3 - Fresh water is obtained from seawater at a rate of...Ch. 13.3 - Is it possible for an adiabatic liquid-vapor...Ch. 13.3 - Prob. 84PCh. 13.3 - Prob. 85RPCh. 13.3 - The products of combustion of a hydrocarbon fuel...Ch. 13.3 - A mixture of gases is assembled by first filling...Ch. 13.3 - Prob. 90RPCh. 13.3 - Prob. 91RPCh. 13.3 - Prob. 92RPCh. 13.3 - A rigid tank contains a mixture of 4 kg of He and...Ch. 13.3 - A spring-loaded pistoncylinder device contains a...Ch. 13.3 - Prob. 95RPCh. 13.3 - Reconsider Prob. 1395. Calculate the total work...Ch. 13.3 - Prob. 97RPCh. 13.3 - Prob. 100RPCh. 13.3 - Prob. 101RPCh. 13.3 - Prob. 102FEPCh. 13.3 - An ideal-gas mixture whose apparent molar mass is...Ch. 13.3 - An ideal-gas mixture consists of 2 kmol of N2and 4...Ch. 13.3 - Prob. 105FEPCh. 13.3 - Prob. 106FEPCh. 13.3 - An ideal-gas mixture consists of 3 kg of Ar and 6...Ch. 13.3 - Prob. 108FEPCh. 13.3 - Prob. 109FEPCh. 13.3 - Prob. 110FEPCh. 13.3 - Prob. 111FEP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A mixture of gases is assembled by first filling an evacuated 0.39-m3 tank with neon until the pressure is 35 kPa. Oxygen is added next until the pressure increases to 105 kPa. Finally, nitrogen is added until the pressure increases to 140 kPa. During each step of the tank’s filling, the contents are maintained at 60°C. Determine the mass of each constituent in the resulting mixture. The mass of neon is kg. The mass of oxygen is kg. The mass of nitrogen is kg.arrow_forwardNOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A piston–cylinder device contains 6 kg of H2 and 21 kg of N2 at 160 K and 5 MPa. Heat is now transferred to the device, and the mixture expands at constant pressure until the temperature rises to 200 K. Determine the heat transfer during this process by treating the mixture as a nonideal gas and using Amagat’s law. The universal gas constant is Ru = 8.314 kPa·m3/kmol·K. Use the table containing the molar mass, gas constant, and critical-point properties; the generalized enthalpy departure chart; and the table containing the ideal-gas properties of air.arrow_forwardA mixture of 5 kg of Hydrogen and 26 kg of Nitrogen are contained in a piston cylinder assembly at a pressure of 6.78 MPa and a temperature of 125 K. heat is transferred to the device and the mixture expands at a constant pressure until the temperature rises to 135 K. Determine the heat transfer in kJ during the process by treating the mixture as a non-ideal gas and using the Amagat's law.arrow_forward
- uestion 4: (a) An 88-litre gas cylinder is filled with propane gas at a pressure of 1.15 MPa and 18°C. The propane is used to fuel a gas burner. After some time, the pressure and temperature are 210 kPa and 23°C respectively. Determine the mass of propane used. The molar mass of propane is 44 g/mole. (b) A piston-cylinder device filled with air at 365 kPa and 12°C, has an initial volume of 1.3 litres. The air is expanded at constant pressure to a volume of 3.6 litres and 516°C. Determine the amount of heat and work involved in this process and state whether the heat and work are into, or out of the gas.arrow_forwardAn insulated rigid tank is divided into two compartments by a partition. One compartment contains 7 kg of oxygen gas at 40°C and 100kPa, and the other compartment contains 4 kg of nitrogen gas at 20°C and 150kPa. Now the partition is removed, and the two gases are allowed to mix. Determine:- (a) the mixture temperature and (b) the mixture pressure after equilibrium. CvN2=0.743 kJ/kg K and CvO2 = 0.658 kJ/kg K .arrow_forwardAn insulated rigid tank is divided into two compartments by a partition. One compartment contains 7 kg of oxygen gas at 40°C and 100 kPa, and the other compartment contains 4 kg of nitrogen gas at 20°C and 150 kPa. Now the partition is removed, and the two gases are allowed to mix. Determine (a) the mixture temperature and (b) the mixture pressure after equilibrium has been established.arrow_forward
- A mixture of nitrogen and carbon dioxide has a carbon dioxide mass fraction of 50 percent. This mixture is heated at constant pressure in a closed system from 120 kPa and 30°C to 200°C. Calculate the work produced during this heating in kJ/kg.arrow_forwardAt 1.2 Mpa, a mixture of saturated steam and liquid water exists in equilibrium.If the specific enthalpy of the mixture is 1700 kJ/kg. Determine the temperature ofmixture. Calculate the quality of steam, percent moisture content of the mixture,specific volume, specific internal energy and specific entropy.arrow_forwardPlease solve this correctlyarrow_forward
- A steam supply at 1.5MP is formed from a mixture of steam at 1.5MPA and dryness fraction 0.9 and steam at 1.5MPA and temperature 210°C in the ratio 1:2 by mass. The mixture is then throttled down to a pressure of 0.28MPa. Determine a-the density of the mixture before throttling b-the temperature of steam after throttling. Take the specific heat of superheated steam as 2kJ/kg K. (7.79kg/m², 15. 141.5°C)arrow_forwardOn a hot summer day, you decide to make some iced tea. First, you brew 1.50 L of hot tea and leave it to steep until it has reached a temperature of Ttea = 75.0 ∘C. You then add 0.975 kg of ice taken from the freezer at a temperature of Tice = 0 ∘C. By the time the mix reaches equilibrium, all of the ice has melted. What is the final temperature Tf of the mixture? For the purposes of this problem, assume that the tea has the same thermodynamic properties as plain water. The specific heat of water is c = 4190 J/kg⋅∘C The heat of fusion of ice is Lf = 3.33×105 J/kg The density of the tea is ρ tea = 1.00 kg/Larrow_forwardCalculate the specific volume of air-vapor mixture (m3/kgda) when the following conditions prevail: t=30°C, W=0.015kg/kgda, Pt=90kPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License