Concept explainers
Consider a mixture of two gases A and B. Show that when the mass fractions mfA and mfB are known, the mole fractions can be determined from
where MA and MB are the molar masses of A and B.
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
THERMODYNAMICS-SI ED. EBOOK >I<
- A vessel contains at 1 bar and 20°C a mixture of 1 mole of CO; and 4 moles of air. Calculate for the mixture: (i) The masses of CO, O, and N2: (ii) The percentage carbon content by mass; (iii) The apparent molecular weight and the gas constant for the mixture; (iv) The specific volume of the mixture; (v) If the mixture is heated at constant pressure to 100°C, find the changes in internal energy, enthalpy and entropy of the mixture.arrow_forwardA vessel contains at 1 bar and 20°C a mixture of 1 mole of CO2 and 4 moles of air. Calculate for the mixture: (i) The masses of CO2, Oz and N2; (ii) The percentage carbon content by mass; (iii) The apparent molecular weight and the gas constant for the mixture; (iv) The specific volume of the mixture; (v) If the mixture is heated at constant pressure to 100°C, find the changes in internal energy, enthalpy and entropy of the mixture.arrow_forwardA vessel contains at 1 bar and 20°C a mixture of 1 mole of CO2 and 4 moles of air. Calculate for the mixture: (i) The masses of CO2, O2 and N2; (ii) The percentage carbon content by mass; (iii) The apparent molecular weight and the gas constant for the mixture; (iv) The specific volume of the mixture; (v) If the mixture is heated at constant pressure to 100°C, find the changes in internal energy, enthalpy and entropy of the mixture.arrow_forward
- The gas constant of CO2, N2, and He are 0.1889, 0.2968, and 2.077 kJ/kg-°K respectively. The three are mixed with 0.4 kg CO2, 0.7 kg, N2, and 0.05 kg He. The mixture has a temperature of 35°C and pressure of 180 kPa. Calculate the volume of the mixture in cubic meters. 0.1598 0.6625 0.7856arrow_forwardA rigid tank contains 5 kg of a mixture of argon and oxygen at 600 K and 55 C, 60% of mixture is O2 by volume. Determine the partial pressure of each gas and the tank volume. If the mixture temperature is raised to 90 C what is the Change in specific internal energy and specific enthalpy.arrow_forwardA mixture of gaseous reactants is put into a cylinder, where a chemical reaction turns them into gaseous products. The cylinder has a piston that moves in or out, as necessary, to keep a constant pressure on the mixture of 1 atm. The cylinder is also submerged in a large insulated water bath. (See sketch at right.) 1 atm pressure piston cylinder From previous experiments, this chemical reaction is known to absorb 322. kJ of energy. water bath The temperature of the water bath is monitored, and it is determined from this data that 188. kJ of heat flows out of the gases system during the reaction. O exothermic Is the reaction exothermic or endothermic? O endothermic O up Does the temperature of the water bath go up or ? O down down? O neither O in Does the piston move in or out? O out O neither O does work Does the gas mixture do work, or is work done on it? O work done on it O neither How much work is done on (or by) the gas mixture? Be sure your answer has the correct number of…arrow_forward
- please help me with thisarrow_forwardQ 2/ A 47 g aluminium block at 90 °C. Is placed in 100 g of water at 21°C .The final temperature of the mixture is 26°C.What is the specific heat of aluminium (C Al= 0.887 J/g.C)arrow_forwardThe viscosity values for the H2 and Freon-12 gas mixtures at 25 ° C and 1 atm pressure and the mole fractions of the mixture are given in the table below. For H2 and Freon-12, calculate the viscosity values of the mixture for 3 different compositions using pure viscosity values. H2 Mol Frac. 0,00 0,25 0,50 0,75 1,00 Viscosity (µ) x 106 (poise) 124,0 128,1 131,9 135,1 88,4arrow_forward
- A gas mixture consists of 9 kmol H2 and 2 kmol of N2 . Part A Determine the mass of H2 . Express your answer to four significant figures and include the appropriate units. Part B Determine the mass of N2. Express your answer to three significant figures and include the appropriate units. Part C Determine the apparent gas constant of the mixture. Express your answer to three significant figures. Part D What-if Scenario: What would the apparent gas constant of the mixture be if hydrogen were replaced by oxygen? Express your answer to three significant figures.arrow_forward16. What is the most nearly the combined volume of 1.0g of hydrogen gas and 7.0g of helium gas when confined at 35°C and 8atm? c. 12.5200Lİ a. 12.7251Lİ b. 13.0432Lİ с. d. 12.6430Lİarrow_forwardsolve the question given in the image.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY