Elementary Statistics (Text Only)
Elementary Statistics (Text Only)
2nd Edition
ISBN: 9780077836351
Author: Author
Publisher: McGraw Hill
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13.2, Problem 7E

a.

To determine

To construct:a 95% confidence interval for mean response when x=2

a.

Expert Solution
Check Mark

Answer to Problem 7E

  7.89±1.5431738

Explanation of Solution

Given information: the sample size 25 , b0=3.25,b1=2.32,se=3.53,(xx¯)2=224.05,x¯=0.98

Formula Used:the formulas to be used when constructing a confidence interval for a mean response and when constructing a prediction interval for an individual response.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for the mean response is

  y±tα/2.se1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for an individual response is

  y±tα/2.se1+1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

the predicted value corresponding to x* when x=2

  y=b0+b1x*y=3.25+2.32(2)y=3.25+4.64y=7.89

The t table corresponding t-value for the given confidence interval 95% and degrees of freedom 23 is not provided in the book. But below shows that the t-valueis 2.069 .

  Elementary Statistics (Text Only), Chapter 13.2, Problem 7E , additional homework tip  1

Now to construct prediction interval for the mean response.

  y±tα/2.se1n+ ( x * x ¯ ) 2 (x x ¯ ) 2 7.89±tα/23.531 25+ (20.98) 2 224.057.89±tα/23.531 25+ (1.02) 2 224.057.89±tα/23.531 25+ 1.0404 224.057.89±tα/23.530.04+ 1.0404 224.057.89±tα/23.530.04+0.004643606337.89±tα/23.530.044643606337.89±tα/23.53(0.21129033659)7.89±tα/20.74585488817

  7.89±tα/20.745854888177.89±(2.069)(0.74585488817)7.89±1.5431738

b.

To determine

To construct: a 95% prediction interval for individual response when x=2

b.

Expert Solution
Check Mark

Answer to Problem 7E

  7.89±7.4648188

Explanation of Solution

Given information: the sample size 25 , b0=3.25,b1=2.32,se=3.53,(xx¯)2=224.05,x¯=0.98

Formula Used:the formulas to be used when constructing a confidence interval for a mean response and when constructing a prediction interval for an individual response.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for the mean response is

  y±tα/2.se1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for an individual response is

  y±tα/2.se1+1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

the predicted value corresponding to x* when x=2

  y=b0+b1x*y=3.25+2.32(2)y=3.25+4.64y=7.89

The t table corresponding t-value for the given confidence interval 95% and degrees of freedom 23 is not provided.But below shows that the t-value is 2.069 .

  Elementary Statistics (Text Only), Chapter 13.2, Problem 7E , additional homework tip  2

Now to construct prediction interval for the individual response.

  y±tα/2.se1n+ ( x * x ¯ ) 2 (x x ¯ ) 2 y±tα/2.se1+1n+ ( x * x ¯ ) 2 (x x ¯ ) 2 7.89±tα/23.531+1 25+ (20.98) 2 224.057.89±tα/23.531+0.04+ 1.0404 224.057.89±tα/23.531+0.04+ 1.0404 224.057.89±tα/23.531.044643606347.89±tα/23.53(1.02207808231)7.89±tα/23.60793563055

  7.89±tα/23.607935630557.89±(2.069)(3.60793563055)7.89±7.4648188

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c   Overhead Costs    Billable Hours345000    3000385000    4000410000    5000462000    6000530000    7000545000    8000
Using the accompanying Home Market Value data and associated regression​ line, Market ValueMarket Valueequals=​$28,416plus+​$37.066×Square ​Feet, compute the errors associated with each observation using the formula e Subscript ieiequals=Upper Y Subscript iYiminus−ModifyingAbove Upper Y with caret Subscript iYi and construct a frequency distribution and histogram. Square Feet    Market Value1813    911001916    1043001842    934001814    909001836    1020002030    1085001731    877001852    960001793    893001665    884001852    1009001619    967001690    876002370    1139002373    1131001666    875002122    1161001619    946001729    863001667    871001522    833001484    798001589    814001600    871001484    825001483    787001522    877001703    942001485    820001468    881001519    882001518    885001483    765001522    844001668    909001587    810001782    912001483    812001519    1007001522    872001684    966001581    86200
a. Find the value of A.b. Find pX(x) and py(y).c. Find pX|y(x|y) and py|X(y|x)d. Are x and y independent? Why or why not?

Chapter 13 Solutions

Elementary Statistics (Text Only)

Ch. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Calculator display: The following TI-84 Plus...Ch. 13.1 - Prob. 28ECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Confidence interval for the conditional mean: In...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Dry up: Use the data in Exercise 26 in Section...Ch. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - In Exercises 9 and 10, determine whether the...Ch. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - For the following data set: Construct the multiple...Ch. 13.3 - Engine emissions: In a laboratory test of a new...Ch. 13.3 - Prob. 16ECh. 13.3 - Prob. 17ECh. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13 - A confidence interval for 1 is to be constructed...Ch. 13 - A confidence interval for a mean response and a...Ch. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Construct a 95% confidence interval for 1.Ch. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - Prob. 12CQCh. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - Prob. 15CQCh. 13 - Prob. 1RECh. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Air pollution: Following are measurements of...Ch. 13 - Icy lakes: Following are data on maximum ice...Ch. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 1WAICh. 13 - Prob. 2WAICh. 13 - Prob. 1CSCh. 13 - Prob. 2CSCh. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CSCh. 13 - Prob. 6CSCh. 13 - Prob. 7CS
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License