Connect Hosted by ALEKS Access Card or Elementary Statistics
Connect Hosted by ALEKS Access Card or Elementary Statistics
3rd Edition
ISBN: 9781260373752
Author: William Navidi Prof., Barry Monk Professor
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13.2, Problem 7E

a.

To determine

To construct:a 95% confidence interval for mean response when x=2

a.

Expert Solution
Check Mark

Answer to Problem 7E

  7.89±1.5431738

Explanation of Solution

Given information: the sample size 25 , b0=3.25,b1=2.32,se=3.53,(xx¯)2=224.05,x¯=0.98

Formula Used:the formulas to be used when constructing a confidence interval for a mean response and when constructing a prediction interval for an individual response.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for the mean response is

  y±tα/2.se1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for an individual response is

  y±tα/2.se1+1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

the predicted value corresponding to x* when x=2

  y=b0+b1x*y=3.25+2.32(2)y=3.25+4.64y=7.89

The t table corresponding t-value for the given confidence interval 95% and degrees of freedom 23 is not provided in the book. But below shows that the t-valueis 2.069 .

  Connect Hosted by ALEKS Access Card or Elementary Statistics, Chapter 13.2, Problem 7E , additional homework tip  1

Now to construct prediction interval for the mean response.

  y±tα/2.se1n+ ( x * x ¯ ) 2 (x x ¯ ) 2 7.89±tα/23.531 25+ (20.98) 2 224.057.89±tα/23.531 25+ (1.02) 2 224.057.89±tα/23.531 25+ 1.0404 224.057.89±tα/23.530.04+ 1.0404 224.057.89±tα/23.530.04+0.004643606337.89±tα/23.530.044643606337.89±tα/23.53(0.21129033659)7.89±tα/20.74585488817

  7.89±tα/20.745854888177.89±(2.069)(0.74585488817)7.89±1.5431738

b.

To determine

To construct: a 95% prediction interval for individual response when x=2

b.

Expert Solution
Check Mark

Answer to Problem 7E

  7.89±7.4648188

Explanation of Solution

Given information: the sample size 25 , b0=3.25,b1=2.32,se=3.53,(xx¯)2=224.05,x¯=0.98

Formula Used:the formulas to be used when constructing a confidence interval for a mean response and when constructing a prediction interval for an individual response.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for the mean response is

  y±tα/2.se1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

Let x* be a value of the explanatory variable x , let y=b0+b1x* be the predicted value corresponding to x* and let n be the sample size .A level 100(1α)% prediction interval for an individual response is

  y±tα/2.se1+1n+ ( x * x ¯ )2 (x x ¯ ) 2

Here, the critical value tα/2 is based on n2 degrees of freedom.

the predicted value corresponding to x* when x=2

  y=b0+b1x*y=3.25+2.32(2)y=3.25+4.64y=7.89

The t table corresponding t-value for the given confidence interval 95% and degrees of freedom 23 is not provided.But below shows that the t-value is 2.069 .

  Connect Hosted by ALEKS Access Card or Elementary Statistics, Chapter 13.2, Problem 7E , additional homework tip  2

Now to construct prediction interval for the individual response.

  y±tα/2.se1n+ ( x * x ¯ ) 2 (x x ¯ ) 2 y±tα/2.se1+1n+ ( x * x ¯ ) 2 (x x ¯ ) 2 7.89±tα/23.531+1 25+ (20.98) 2 224.057.89±tα/23.531+0.04+ 1.0404 224.057.89±tα/23.531+0.04+ 1.0404 224.057.89±tα/23.531.044643606347.89±tα/23.53(1.02207808231)7.89±tα/23.60793563055

  7.89±tα/23.607935630557.89±(2.069)(3.60793563055)7.89±7.4648188

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Given the following sample data values: 7, 12, 15, 9, 15, 13, 12, 10, 18,12 Find the following: a) Σ x= b) x² = c) x = n d) Median = e) Midrange x = (Enter a whole number) (Enter a whole number) (use one decimal place accuracy) (use one decimal place accuracy) (use one decimal place accuracy) f) the range= g) the variance, s² (Enter a whole number) f) Standard Deviation, s = (use one decimal place accuracy) Use the formula s² ·Σx² -(x)² n(n-1) nΣ x²-(x)² 2 Use the formula s = n(n-1) (use one decimal place accuracy)
Table of hours of television watched per week: 11 15 24 34 36 22 20 30 12 32 24 36 42 36 42 26 37 39 48 35 26 29 27 81276 40 54 47 KARKE 31 35 42 75 35 46 36 42 65 28 54 65 28 23 28 23669 34 43 35 36 16 19 19 28212 Using the data above, construct a frequency table according the following classes: Number of Hours Frequency Relative Frequency 10-19 20-29 |30-39 40-49 50-59 60-69 70-79 80-89 From the frequency table above, find a) the lower class limits b) the upper class limits c) the class width d) the class boundaries Statistics 300 Frequency Tables and Pictures of Data, page 2 Using your frequency table, construct a frequency and a relative frequency histogram labeling both axes.
Table of hours of television watched per week: 11 15 24 34 36 22 20 30 12 32 24 36 42 36 42 26 37 39 48 35 26 29 27 81276 40 54 47 KARKE 31 35 42 75 35 46 36 42 65 28 54 65 28 23 28 23669 34 43 35 36 16 19 19 28212 Using the data above, construct a frequency table according the following classes: Number of Hours Frequency Relative Frequency 10-19 20-29 |30-39 40-49 50-59 60-69 70-79 80-89 From the frequency table above, find a) the lower class limits b) the upper class limits c) the class width d) the class boundaries Statistics 300 Frequency Tables and Pictures of Data, page 2 Using your frequency table, construct a frequency and a relative frequency histogram labeling both axes.

Chapter 13 Solutions

Connect Hosted by ALEKS Access Card or Elementary Statistics

Ch. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 26aECh. 13.1 - Calculator display: The following TI-84 Plus...Ch. 13.1 - Prob. 28aECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Confidence interval for the conditional mean: In...Ch. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Dry up: Use the data in Exercise 26 in Section...Ch. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - In Exercises 9 and 10, determine whether the...Ch. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - For the following data set: Construct the multiple...Ch. 13.3 - Engine emissions: In a laboratory test of a new...Ch. 13.3 - Prob. 16ECh. 13.3 - Prob. 17ECh. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13 - A confidence interval for 1 is to be constructed...Ch. 13 - A confidence interval for a mean response and a...Ch. 13 - Prob. 3CQCh. 13 - Prob. 4CQCh. 13 - Prob. 5CQCh. 13 - Prob. 6CQCh. 13 - Construct a 95% confidence interval for 1.Ch. 13 - Prob. 8CQCh. 13 - Prob. 9CQCh. 13 - Prob. 10CQCh. 13 - Prob. 11CQCh. 13 - Prob. 12CQCh. 13 - Prob. 13CQCh. 13 - Prob. 14CQCh. 13 - Prob. 15CQCh. 13 - Prob. 1RECh. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Air pollution: Following are measurements of...Ch. 13 - Icy lakes: Following are data on maximum ice...Ch. 13 - Prob. 13RECh. 13 - Prob. 14RECh. 13 - Prob. 15RECh. 13 - Prob. 1WAICh. 13 - Prob. 2WAICh. 13 - Prob. 1CSCh. 13 - Prob. 2CSCh. 13 - Prob. 3CSCh. 13 - Prob. 4CSCh. 13 - Prob. 5CSCh. 13 - Prob. 6CSCh. 13 - Prob. 7CS
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License