Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
3rd Edition
ISBN: 9780134689555
Author: Edgar Goodaire, Michael Parmenter
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 13.2, Problem 4TFQ
To determine
Whether the statement “IF graph G has an n-coloring, then
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let G be a graph of order n that is isomorphic to its complement G. How many edges does
G have? Explain your answer.
If a graph G has n vertices, all of which but one have odd degree, how many vertices of odd
degree are there in G, the complement of G? Prove your answer.
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels
traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest
form, it is a way of coloring the vertices of a graph such that no two adjacent vertices share the
same color; this is called a vertex coloring. The chromatic number of a graph is the least
number of colors required to do a coloring of a graph.
Example
Here in this graph the chromatic number is 3 since we used 3 colors
The degree of a vertex v in a graph (without loops) is the number of edges at v. If
there are loops at v each loop contributes 2 to the valence of v.
A graph is connected if for any pair of vertices u and v one can get from u to v by
moving along the edges of the graph. Such routes that move along edges are known
by different names: edge progressions, paths, simple paths, walks, trails, circuits,
cycles, etc.
14
13
12
15
7
10
16
1. Is there a connected graph whose degree…
3
Chapter 13 Solutions
Discrete Mathematics with Graph Theory (Classic Version) (3rd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Ch. 13.1 - Prob. 1TFQCh. 13.1 - Prob. 2TFQCh. 13.1 - Prob. 3TFQCh. 13.1 - Prob. 4TFQCh. 13.1 - Prob. 5TFQCh. 13.1 - Prob. 6TFQCh. 13.1 - Prob. 7TFQCh. 13.1 - Prob. 8TFQCh. 13.1 - Prob. 9TFQCh. 13.1 - Prob. 10TFQ
Ch. 13.1 - [BB] Show that the graph is planar by drawing an...Ch. 13.1 - Prob. 2ECh. 13.1 - Prob. 3ECh. 13.1 - 4. One of the two graphs is planar; the other is...Ch. 13.1 - Prob. 5ECh. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - Prob. 8ECh. 13.1 - Prob. 9ECh. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Discover what you can about Kazimierz Kuratowski...Ch. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - [BB] Prove that every planar graph V2 vertices has...Ch. 13.1 - Prob. 21ECh. 13.1 - [BB] suppose G is a connected planar graph in...Ch. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.2 - Prob. 1TFQCh. 13.2 - Prob. 2TFQCh. 13.2 - Prob. 3TFQCh. 13.2 - Prob. 4TFQCh. 13.2 - Prob. 5TFQCh. 13.2 - Prob. 6TFQCh. 13.2 - Prob. 7TFQCh. 13.2 - Prob. 8TFQCh. 13.2 - Prob. 9TFQCh. 13.2 - Prob. 10TFQCh. 13.2 - Prob. 1ECh. 13.2 - Prob. 2ECh. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - [BB] The following semester, all the students in...Ch. 13.2 - Prob. 22ECh. 13.2 - 23. The local day care center has a problem...Ch. 13.2 - Prob. 24ECh. 13.2 - Prob. 25ECh. 13.2 - (a) [BB] Draw the dual graph of the cube...Ch. 13.2 - [BB] is it possible for a plane graph, considered...Ch. 13.3 - Prob. 1TFQCh. 13.3 - Prob. 2TFQCh. 13.3 - Prob. 3TFQCh. 13.3 - Prob. 4TFQCh. 13.3 - Prob. 5TFQCh. 13.3 - Prob. 6TFQCh. 13.3 - Prob. 7TFQCh. 13.3 - Prob. 8TFQCh. 13.3 - Prob. 9TFQCh. 13.3 - Prob. 10TFQCh. 13.3 - Prob. 1ECh. 13.3 - Prob. 2ECh. 13.3 - [BB] True or False? A line-of-sight graph is...Ch. 13.3 - Prob. 4ECh. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - [BB] Assume that the only short circuits in a...Ch. 13.3 - Prob. 10ECh. 13.3 - 11. Find a best possible feasible relationship...Ch. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - Prob. 14ECh. 13.3 - Prob. 15ECh. 13.3 - [BB] Apply Brookss Theorem (p. 422 ) to find the...Ch. 13 - (a) Show that the graph below is planar by drawing...Ch. 13 - Prob. 2RECh. 13 - Prob. 3RECh. 13 - Prob. 4RECh. 13 - Prob. 5RECh. 13 - Prob. 6RECh. 13 - Prob. 7RECh. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Prob. 13RECh. 13 - 14. Suppose that in one particular semester there...Ch. 13 - Prob. 15RECh. 13 - 16. Draw the line-of-sight graph associated with...Ch. 13 - Prob. 17RECh. 13 - Prob. 18RECh. 13 - Prob. 19RECh. 13 - A contractor is building a single house for a...Ch. 13 - 23. The Central Newfoundland Hospital Board would...
Knowledge Booster
Similar questions
- Let Vn be the set of connected graphs having n edges, vertex set [n], and exactly one cycle. Form a graph Gn whose vertex set is Vn. Include {gn, hn} as an edge of Gn if and only if gn and hn differ by two edges, i.e. you can obtain one from the other by moving a single edge. Tell us anything you can about the graph Gn. For example, (a) How many vertices does it have? (b) Is it regular (i.e. all vertices the same degree)? (c) Is it connected? (d) What is its diameter?arrow_forwardDetermine which of the following graphs are isomorphic (the same up to permutation of vertices). G3 G2 G₁ XX G4 G6 G5arrow_forwardLet G be a graph with 10 vertices and 5 components. If a vertex is removed from G, the number of components in the resultant graph must lie down between and 10 and 4 9 and 4 10 and 3 9 and 5arrow_forward
- When n = 3, there are nonisomorphic simple graphs.arrow_forwardLet G be a graph such that every vertex has degree 4 and the number of edges is 12. How many vertices does G have?arrow_forwardLet G be a 6-vertex graph whose list of vertex-deleted subgraphs (subgraphsobtained by deleting exactly one vertex) is as below. Determine G and justify your answer.arrow_forward
- "Let G be a simple graph. The graph G has no induced subgraph isomorphic to P3 if and only if every component of G is isomorphic to a complete graph."arrow_forwardSuppose a graph G is regular of degree r, where r is odd. (a) prove that G has an even even number of vertices (b) prove that the number of edges of G is a multiple of rarrow_forwardUse the Handshaking Lemma to show that a graph G always has an even number of vertices with odd degrees.arrow_forward
- Statement. Let G be a connected graph. G is bipartite if and only if x(G) = 2. (a) We will first prove P→Q. So we are assuming G is a connected, bipartite graph with partite sets X and Y, and we'll prove x(G) = 2. i. How do you color the vertices of the graph using only the colors 1 and 2 so that you have a proper vertex-coloring? Provide some justification as to why this will be a proper vertex- coloring. (This will show that x(G) ≤ 2). ii. Why is x(G) 2? (b) We now prove Q→ P. So we are assuming G is a connected graph with x(G) = 2, and we'll prove that G is bipartite (you do NOT know G is bipartite!). i. In order to show G is bipartite, we must identify partite sets X and Y. What are they? Why is there no edge that has both endpoints in X or both endpoints in Y?arrow_forwardDiscrete math. Graph theoryarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education