
Concept explainers
(a)
Find the required increased in speed at A
(a)

Answer to Problem 13.105P
The required increased in speed at point A
Explanation of Solution
Given information:
The altitude between the earth to point A
The altitude between the earth to point B
The radius of the earth (R) is
The acceleration due to gravity (g) is
Calculation:
Write the expression for the geocentric force acting on the spacecraft when it is orbiting around the earth
Here, G is the universal gravitational constant, M is the mass of the earth, and m is the mass of the space vehicle.
Write the expression for the force acting on the space vehicle on the surface of the earth due to gravity
Substitute
Substitute 9.81 m/s2 for g and
Write the expression for the centripetal force (F) acting on the spacecraft rotating around the earth at the given altitude as follows:
Here, v is the velocity of the spacecraft describing a circular path around the earth.
Write the expression for the geocentric force (F) acting on the spacecraft rotating at the given altitude around the earth as follows:
Equate equations (1) and (2).
Calculate the radius of the circular orbit described by the space vehicle around the earth at height
Substitute
Calculate the velocity of the space vehicle at point A
Substitute
Calculate the radius of the circular orbit described by the space vehicle around the earth at height
Substitute
Calculate the velocity of space vehicle at point B
Substitute
Use the principle of conservation of angular momentum states that, in the absence of external torque acting on the body, the angular momentum remains constant and no change of the momentum occurs during the entire process.
Write the expression for the principle of conservation of angular momentum as follows:
Here,
Substitute
Write the expression for the kinetic energy of the space vehicle at point A
Write the expression for the kinetic energy of the space vehicle at point B
Write the expression for the gravitational potential energy of the space vehicle at position A in the path AB
Write the expression for the gravitational potential energy of the space vehicle at position B in the path AB
Use the principle of conservation of energy states that sum of the kinetic and potential energy of a particle remains constant.
Calculate the speed of the space vehicle at positions A
Substitute
Substitute
Consider the equation (1).
Calculate the velocity of space shuttle at point A
Substitute
Calculate the increase in velocity at point A
Substitute
Calculate the increase in the velocity required at B
Substitute
Therefore, the required increased in speed at A
(b)
Find the total energy per unit mass
(b)

Answer to Problem 13.105P
The total energy per unit mass
Explanation of Solution
Given information:
The altitude between the earth to point A
The altitude between the earth to point B
The radius of the earth (R) is
The acceleration due to gravity (g) is
Calculation:
Calculate the total energy per unit mass of the vehicle to execute the transfer of space vehicle
Here, E is the total energy to execute the transfer.
Substitute
Therefore, the total energy per unit mass
Want to see more full solutions like this?
Chapter 13 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
- 1.7 Find the stress distribution in the beam shown in Fig. 1.23 using two beam elements. A. E. I constant M₂ T + FIGURE 1.23 A fixed-pinned beam subjected to a momentarrow_forward42 PART 1 Introduction A. E. I constant FIGURE 1.22 A fixed-pinned beam. 1.6 Find the stress distribution in the beam shown in Fig. 1.22 using two beam elements.arrow_forward1.4 Using a one-beam element idealization, find the stress distribution under a load of P for the uniform cantilever beam shown in Fig. 1.20. A, E, I constant L FIGURE 1.20 A uniform cantilever beamarrow_forward
- Mechanical engineering,FBD required.arrow_forwardSolve this problem and show all of the workarrow_forwardPlease Please use MATLAB with codes and graph. Recreate the following four Figures of the textbook using MATLAB and the appropriate parameters. Comment on your observations for each Figure. List all of the parameters that you have used. The figure is attached below.arrow_forward
- Please only step 6 (last time I asked it was cut off at that point)arrow_forwardPlease Please use a MATLAB with codes and grap. Recreate the following four Figures of the textbook using MATLAB and the appropriate parameters. Comment on your observations for each Figure. List all of the parameters that you have used. The figure attached below.arrow_forwardI REPEAT!!!!! I NEED HANDDRAWING!!!!! NOT A USELESS EXPLANATION!!!! I REPEAT SUBMIT A HANDDRAWING IF YOU CANNOT UNDERSTAND THIS SKIP IT ! I need the real handdrawing complete it by adding these : Pneumatic Valves Each linear actuator must be controlled by a directional control valve (DCV) (e.g., 5/2 or 4/2 valve). The bi-directional motor requires a reversible valve to change rotation direction. Pressure Regulators & Air Supply Include two pressure regulators as per the assignment requirement. Show the main compressed air supply line connecting all components. Limit Switches & Safety Features Attach limit switches to each actuator to detect positions. Implement a two-handed push-button safety system to control actuator movement. Connections Between Components Draw air supply lines linking the compressor, valves, and actuators. Clearly label all inputs and outputs for better understanding.arrow_forward
- I need the real handdrawing complete it by adding these : Pneumatic Valves Each linear actuator must be controlled by a directional control valve (DCV) (e.g., 5/2 or 4/2 valve). The bi-directional motor requires a reversible valve to change rotation direction. Pressure Regulators & Air Supply Include two pressure regulators as per the assignment requirement. Show the main compressed air supply line connecting all components. Limit Switches & Safety Features Attach limit switches to each actuator to detect positions. Implement a two-handed push-button safety system to control actuator movement. Connections Between Components Draw air supply lines linking the compressor, valves, and actuators. Clearly label all inputs and outputs for better understanding.arrow_forwardAn elastic bar of the length L and cross section area A is rigidly attached to the ceiling of a room, and it supports a mass M. Due to the acceleration of gravity g the rod deforms vertically. The deformation of the rod is measured by the vertical displacement u(x) governed by the following equations: dx (σ(x)) + b(x) = 0 PDE σ(x) = Edx du Hooke's law (1) b(x) = gp= body force per unit volume where E is the constant Young's modulus, p is the density, and σ(x) the axial stress in the rod. g * I u(x) L 2arrow_forwardAn elastic bar of the length L and cross section area A is rigidly attached to the ceiling of a room, and it supports a mass M. Due to the acceleration of gravity g the rod deforms vertically. The deformation of the rod is measured by the vertical displacement u(x) governed by the following equations: dx (σ(x)) + b(x) = 0 PDE σ(x) = Edx du Hooke's law (1) b(x) = gp= body force per unit volume where E is the constant Young's modulus, p is the density, and σ(x) the axial stress in the rod. g * I u(x) L 2arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





