Bundle: Multivariable Calculus, 8th + WebAssign Printed Access Card for Stewart's Calculus, 8th Edition, Single-Term
8th Edition
ISBN: 9781305779198
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13.1, Problem 38E
Graph the curve with parametric equations x = sin t, y = sin 2t, z = cos 4t. Explain its shape by graphing its projections onto the three coordinate planes.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the equation of the curve described by the parametric equations
x = 3+cost, y = -5+sint ?
Graph the curve with parametric equations
x = sin(t), y = 3 sin(2t), z = sin(3t).
Find the total length of this curve correct to four decimal places.
find parametric equation (cartesian) for tagent line to r=cos(2theta) at theta=2
Chapter 13 Solutions
Bundle: Multivariable Calculus, 8th + WebAssign Printed Access Card for Stewart's Calculus, 8th Edition, Single-Term
Ch. 13.1 - Prob. 1ECh. 13.1 - Prob. 2ECh. 13.1 - Find the limit. 3. limt0(e3ti+t2sin2tj+cos2tk)Ch. 13.1 - Find the limit. 4. limt1(t2-tt-1i+t+8j+sintlntk)Ch. 13.1 - Find the limit. 5. limt1+t21t2,tan-1t,1e2ttCh. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - Prob. 8ECh. 13.1 - Prob. 9ECh. 13.1 - Prob. 10E
Ch. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16ECh. 13.1 - Find a vector equation and parametric equations...Ch. 13.1 - Prob. 18ECh. 13.1 - Find a vector equation and parametric equations...Ch. 13.1 - Prob. 20ECh. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Match the parametric equations with the graphs...Ch. 13.1 - Prob. 27ECh. 13.1 - Show that the curve with parametric equations x =...Ch. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Prob. 31ECh. 13.1 - At what points does the helix r(t) = sin t, cos t,...Ch. 13.1 - Graph the curve with parametric equations x = sin...Ch. 13.1 - Graph the curve with parametric equations x = (1 +...Ch. 13.1 - Prob. 40ECh. 13.1 - Prob. 41ECh. 13.1 - Prob. 42ECh. 13.1 - Prob. 43ECh. 13.1 - Prob. 44ECh. 13.1 - Prob. 45ECh. 13.1 - Prob. 46ECh. 13.1 - If two objects travel through space along two...Ch. 13.1 - Prob. 50ECh. 13.1 - Prob. 53ECh. 13.2 - Prob. 1ECh. 13.2 - Prob. 2ECh. 13.2 - (a) Sketch the plane curve with the given vector...Ch. 13.2 - Prob. 4ECh. 13.2 - (a) Sketch the plane curve with the given vector...Ch. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Find the derivative of the vector function. 9....Ch. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - If r(t) = t, t2, t3, find r'(t), T( 1), r"(t). and...Ch. 13.2 - Prob. 22ECh. 13.2 - Prob. 23ECh. 13.2 - Prob. 24ECh. 13.2 - Prob. 25ECh. 13.2 - Find parametric equations for the tangent line to...Ch. 13.2 - Find a vector equation for the tangent line to the...Ch. 13.2 - Find the point on the curve r(t) = 2 cos t, 2 sin...Ch. 13.2 - Find parametric equations tor the tangent line to...Ch. 13.2 - Find parametric equations tor the tangent line to...Ch. 13.2 - Find parametric equations tor the tangent line to...Ch. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - At what point do the curves r1(t) = t, 1 t, 3 +...Ch. 13.2 - Evaluate the integral. 35. 02(ti-t3j+3t5k)dtCh. 13.2 - Prob. 36ECh. 13.2 - Prob. 37ECh. 13.2 - Evaluate the integral. 38....Ch. 13.2 - Evaluate the integral. 39....Ch. 13.2 - Evaluate the integral. 40. (te2ti+t1-tj+11-t2k)dtCh. 13.2 - Find r(t) if r'(t) = 2t i + 3t2 j + t k and r(1) =...Ch. 13.2 - Prob. 42ECh. 13.2 - Prove Formula 1 of Theorem 3.Ch. 13.2 - Prove Formula 3 of Theorem 3.Ch. 13.2 - Prob. 45ECh. 13.2 - Prove Formula 6 of Theorem 3.Ch. 13.2 - Prob. 47ECh. 13.2 - Prob. 48ECh. 13.2 - Find f'(2), where f(t) = u(t) v(t), u(2) = 1, 2,...Ch. 13.2 - If r(t) = u(t) v(t), where u and v are the vector...Ch. 13.2 - If r(t) = a cos t + b sin t, where a and b are...Ch. 13.2 - If r is the vector function in Exercise 51, show...Ch. 13.2 - Show that if r is a vector function such that r''...Ch. 13.2 - Prob. 54ECh. 13.2 - If r(t) 0, show that ddtr(t)=1r(t)r(t)r(t)....Ch. 13.2 - Prob. 56ECh. 13.2 - Prob. 57ECh. 13.2 - Prob. 58ECh. 13.3 - Find the length of the curve. 1. r(t) =t, 3 cos t,...Ch. 13.3 - Find the length of the curve. 2. r(t)=2t,t2,13t3,...Ch. 13.3 - Prob. 3ECh. 13.3 - Find the length of the curve. 4. r(t) =cos t i +...Ch. 13.3 - Find the length of the curve. 5. r(t) = i + t2 j +...Ch. 13.3 - Find the length of the curve. 6. r(t) = t2 i + 9t...Ch. 13.3 - Find the length of the curve correct to four...Ch. 13.3 - Find the length of the curve correct to four...Ch. 13.3 - Prob. 9ECh. 13.3 - Graph the curve with parametric equations x = sin...Ch. 13.3 - Let C be the curve of intersection of the...Ch. 13.3 - Prob. 12ECh. 13.3 - (a) Find the arc length function for the curve...Ch. 13.3 - Prob. 14ECh. 13.3 - Suppose you start at the point (0, 0. 3) and move...Ch. 13.3 - Reparametrize the curve r(t)=(2t2+11)i+2tt2+1j...Ch. 13.3 - (a) Find the unit tangent and unit normal vectors...Ch. 13.3 - Prob. 18ECh. 13.3 - (a) Find the unit tangent and unit normal vectors...Ch. 13.3 - Prob. 20ECh. 13.3 - Use Theorem 10 to find the curvature. 21. r(t) =...Ch. 13.3 - Use Theorem 10 to find the curvature. 22. r(t) = t...Ch. 13.3 - Prob. 23ECh. 13.3 - Prob. 24ECh. 13.3 - Find the curvature of r(t) = t, t2, t3 at the...Ch. 13.3 - Graph the curve with parametric equations x = cos...Ch. 13.3 - Use Formula 11 to find the curvature. 27. y = x4...Ch. 13.3 - Prob. 28ECh. 13.3 - Use Formula 11 to find the curvature. 27. y = x4...Ch. 13.3 - At what point does the curve have maximum...Ch. 13.3 - Prob. 31ECh. 13.3 - Find an equation of a parabola that has curvature...Ch. 13.3 - (a) Is the curvature of the curve C shown in the...Ch. 13.3 - Two graphs, a and b, are shown. One is a curve y =...Ch. 13.3 - Prob. 39ECh. 13.3 - Prob. 42ECh. 13.3 - Use the formula in Exercise 42 to find the...Ch. 13.3 - Use the formula in Exercise 42 to find the...Ch. 13.3 - Use the formula in Exercise 42 to find the...Ch. 13.3 - Consider the curvature at x = 0 for each member of...Ch. 13.3 - Prob. 47ECh. 13.3 - Prob. 48ECh. 13.3 - Find equations of the normal plane and osculating...Ch. 13.3 - Find equations of the normal plane and osculating...Ch. 13.3 - At what point on the curve x = t3, y = 3t, z = t4...Ch. 13.3 - Find equations of the normal and osculating planes...Ch. 13.3 - Prob. 56ECh. 13.3 - Prob. 58ECh. 13.3 - Prob. 59ECh. 13.3 - Show that the curvature of a plane curve is =...Ch. 13.3 - Prob. 62ECh. 13.3 - Prob. 63ECh. 13.3 - Show that the circular helix r(t) = a cos t, a sin...Ch. 13.3 - Prob. 65ECh. 13.3 - Find the curvature and torsion of the curve x =...Ch. 13.3 - The DNA molecule has the shape of a double helix...Ch. 13.4 - The table gives coordinates of a particle moving...Ch. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Prob. 5ECh. 13.4 - Prob. 6ECh. 13.4 - Prob. 7ECh. 13.4 - Prob. 8ECh. 13.4 - Prob. 9ECh. 13.4 - Prob. 10ECh. 13.4 - Prob. 11ECh. 13.4 - Prob. 12ECh. 13.4 - Find the velocity, acceleration, and speed of a...Ch. 13.4 - Prob. 14ECh. 13.4 - Find the velocity and position vectors of a...Ch. 13.4 - Prob. 16ECh. 13.4 - The position function of a particle is given by...Ch. 13.4 - Prob. 20ECh. 13.4 - A force with magnitude 20 N acts directly upward...Ch. 13.4 - Show that if a particle moves with constant speed,...Ch. 13.4 - A projectile is fired with an initial speed of 200...Ch. 13.4 - Rework Exercise 23 if the projectile is fired from...Ch. 13.4 - A ball is thrown at an angle of 45 to the ground....Ch. 13.4 - A projectile is tired from a tank with initial...Ch. 13.4 - A rifle is fired with angle of elevation 36. What...Ch. 13.4 - Prob. 28ECh. 13.4 - A medieval city has the shape of a square and is...Ch. 13.4 - Prob. 30ECh. 13.4 - Prob. 31ECh. 13.4 - A ball with mass 0.8 kg is thrown southward into...Ch. 13.4 - Prob. 34ECh. 13.4 - Prob. 35ECh. 13.4 - (a) If a particle moves along a straight line,...Ch. 13.4 - Prob. 37ECh. 13.4 - Prob. 38ECh. 13.4 - Find the tangential and normal components of the...Ch. 13.4 - Prob. 40ECh. 13.4 - Prob. 41ECh. 13.4 - Find the tangential and normal components of the...Ch. 13.4 - If a particle with mass m moves with position...Ch. 13.4 - The position function of a spaceship is...Ch. 13.4 - A rocket burning its onboard fuel while moving...Ch. 13 - Prob. 1RCCCh. 13 - What is the connection between vector functions...Ch. 13 - Prob. 3RCCCh. 13 - Prob. 4RCCCh. 13 - Prob. 5RCCCh. 13 - Prob. 6RCCCh. 13 - Prob. 7RCCCh. 13 - Prob. 8RCCCh. 13 - Prob. 9RCCCh. 13 - Determine whether the statement is true or false....Ch. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Prob. 5RQCh. 13 - Prob. 6RQCh. 13 - Prob. 7RQCh. 13 - Prob. 8RQCh. 13 - Prob. 9RQCh. 13 - Determine whether the statement is true or false....Ch. 13 - Prob. 11RQCh. 13 - Prob. 12RQCh. 13 - Prob. 13RQCh. 13 - Prob. 14RQCh. 13 - (a) Sketch the curve with vector function r(t) = t...Ch. 13 - Let r(t) = 2-t, (et 1)/t, ln(t + 1). (a) Find the...Ch. 13 - Prob. 3RECh. 13 - Find parametric equations for the tangent line to...Ch. 13 - If r(t) = t2 i + t cos t j + sin t k, evaluate...Ch. 13 - Let C be the curve with equations x = 2 t3 y = 2t...Ch. 13 - Use Simpsons Rule with n = 6 to estimate the...Ch. 13 - Prob. 8RECh. 13 - Prob. 9RECh. 13 - Prob. 10RECh. 13 - Prob. 11RECh. 13 - Prob. 12RECh. 13 - Find the curvature of the curve y = x4 at the...Ch. 13 - Find an equation of the osculating circle of the...Ch. 13 - Prob. 15RECh. 13 - The figure shows the curve C traced by a particle...Ch. 13 - A particle moves with position function r(t) = t...Ch. 13 - Find the velocity, speed, and acceleration of a...Ch. 13 - A particle starts at the origin with initial...Ch. 13 - An athlete throws a shot at an angle of 45 to the...Ch. 13 - A projectile is launched with an initial speed of...Ch. 13 - Prob. 22RECh. 13 - Prob. 23RECh. 13 - PROBLEM PLUS FIGURE FOR PROBLEM 1 1. A particle P...Ch. 13 - Prob. 2PCh. 13 - A projectile is fired from the origin with angle...Ch. 13 - (a) A projectile it fired from the origin down an...Ch. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - If a projectile is fired with angle of elevation ...Ch. 13 - A cable has radius r and length L and is wound...Ch. 13 - Prob. 9P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Object A is travelling along a circle of radius 2, and Object B is travelling along a circle of radius 5. The object have the same angular speed. Do the objects have the same linear speed? If not, which object has the greater linear speed?arrow_forwardWrite parametric equations to describe the curves traced by the following motions:arrow_forwardA bee fles around a room at an altitude of 2= 2.3 meters making circles, so that its r coordinate varies from 1.3 to 1.9 meters, and its y coordinate varies from 2.2 to 2.8 meters. The bee completes one circle every 2.3 seconds. At sime=0 seconds, the bee's y coordinate is 2.8 meters and its velocity vector is completely in the +i direction. Write parametric equations to describe the motion of the bee z(t)= sin(2p/23)+22 y(t) =30(2pit2:3)+1.9 z(t) = 23arrow_forward
- Give a cartesian equation for the curve given by the parametric equations: 4t² - 4t, y = 14t². Simplify your final answer. =arrow_forwardEliminate the parameter in the parametric equations x =7+ sint, y = 2 + sint, for 0sts and describe the curve, indicating its positive orientation. How does this curve differ from the curve x = 7+ sin t, y = 2 + sin t, for 7stsn?arrow_forwardEliminate the parameter t from the parametric equations x = 3 + sin t and y = cos t − 2. Graph the resulting Cartesian equation on a rectangular coordinate system. please show all work, thank you. thumbs up for legibilityarrow_forward
- The curve r = VI + sin20,arrow_forwardFind a pair of parametric equations for y= 3(2-5)² +2. Show all your work for full credit.arrow_forwardGraph the pair of parametric equations for 0 ≤t≤ 2. Describe any differences in the two graphs. (a) x = 8 cost, y = 8 sin t (b) x = 8 cos 6t, y = 8 sin 6t ... (a) Graph the first pair of parametric equations x=8 cost, y = 8 sin t. Use the graphing tool to graph the function. Click to enlarge graph CILDarrow_forward
- consider the following set of parametric equations: x = 6tanhθ ; y = 3sechθ Calculate d^2y/dx^2arrow_forwardrewrite the parametric equations in cartesian form. graph the curve; include an arrow to show the direction of the curve: x(t)=3cos^2t, y(t)=-3sin t answer options provided in photoarrow_forwardYou are watching your friend ride a Ferris wheel whose radius is 40 feet and center at (0,43). When you start watching your friend at t=0, they are at the highest point of the Ferris wheel. You notice the wheel is spinning clockwise at a rate of 120 seconds per revolution. Create a parametric equation that represents your friend's position at t seconds. DO NOT USE A CALCUATOR.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY